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- Solving optimization problems is a key task for
which guantum computers could possibly
provide a speedup over the best known

classical algorithms.

- Particular classes of optimization problems
including semi-definite programming (SDP)
have wide applicability in many domains of
computer science, engineering, mathematics,

and physics.

- Here we focus on semi-definite programs for
which the dimensions of the variables involved
are exponentially large, so that standard
classical SDP solvers are not helpful for such

large-scale problems.
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QSlack Method Overview

QSlack
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Primal Dual
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Estimate the objective function using a quantum computer + Perform the optimization using a classical optimizer

Figure 1. Overview of the QSlack method. From top to bottom, we modify the expressions of the primal and dual
semi-definite programs to a form that can be evaluated on a quantum computer.
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Example: Trace Distance

- Normalized trace distance of n-qubit states p and o:

1
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- Prior approaches focus on the primal optimization
to provide lower bounds on ||p — ||

- For primal optimization, one can use parameterized
measurement circuits.

- Dual optimization can be reformulated using
QSlack:
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- The optimization is performed over parameterizec

states, with estimation using destructive swap test
or mixed-state Loschmidt echo test.
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Convex-combination Ansatz
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Figure 2. Convergence of the primal and dual optimizations to
their optimal values in the Qslack Trace Distance example.
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