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Motivation

Solving optimization problems is a key task for

which quantum computers could possibly

provide a speedup over the best known

classical algorithms.

Particular classes of optimization problems

including semi-definite programming (SDP)

have wide applicability in many domains of

computer science, engineering, mathematics,

and physics.

Here we focus on semi-definite programs for

which the dimensions of the variables involved

are exponentially large, so that standard

classical SDP solvers are not helpful for such

large-scale problems.

Semi-Definite Programs & Duality

Primal SDP:

α := sup
X≥0

{Tr[AX ] : Φ(X) ≤ B} .

Dual SDP:

β := inf
Y ≥0

{
Tr[BY ] : Φ†(Y ) ≥ A

}
.

Strong Duality: α = β.

Key Theoretical Contribution: By making use of

SDP duality theory, the QSlack method provides

a theoretical guarantee that the global optima of

the objective functions sandwich the true opti-

mal value from above and below.

QSlack Method Overview

Estimate the objective function using a quantum computer + Perform the optimization using a classical optimizer
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Figure 1. Overview of the QSlack method. From top to bottom, we modify the expressions of the primal and dual

semi-definite programs to a form that can be evaluated on a quantum computer.
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Example: Trace Distance

Normalized trace distance of n-qubit states ρ and σ:
1
2
‖ρ − σ‖1 = sup

Λ≥0
{Tr[Λ(ρ − σ)] : Λ ≤ I}

= inf
Y ≥0

{Tr[Y ] : Y ≥ ρ − σ}

Prior approaches focus on the primal optimization

to provide lower bounds on 1
2‖ρ − σ‖1.

For primal optimization, one can use parameterized

measurement circuits.

Dual optimization can be reformulated using

QSlack:

inf
Y ≥0

{Tr[Y ] : Y ≥ ρ − σ}

= lim
c→∞

inf
λ,µ≥0,ω,τ∈D

{
λ + c ‖λω − ρ + σ − µτ‖2

2

}
The optimization is performed over parameterized

states, with estimation using destructive swap test

or mixed-state Loschmidt echo test.

Purification Ansatz
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Convex-combination Ansatz
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Figure 2. Convergence of the primal and dual optimizations to

their optimal values in the Qslack Trace Distance example.
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