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Quantum computing is a relatively new computing paradigm that seeks to use
quantum resources, like superposition and entanglement, to process information
in a significantly new way. These resources allow quantum computers to solve
certain problems more efficiently than their classical counterparts, with promising
applications in cryptography, optimization, and materials science. This thesis in-
vestigates the development and implementation of quantum algorithms to solve
certain estimation problems in quantum information science and computing. Us-
ing variational quantum algorithms and near-term hardware, we investigate three
interconnected domains of research: distinguishability estimation, symmetry test-
ing, and nuclear dynamics.

In the first study, we explore the estimation of distinguishability measures,
such as trace distance and fidelity, which are crucial for evaluating quantum infor-
mation processing protocols. We provide novel interpretations of these different
measures and study the computational complexity of the algorithms to estimate
these measures.

Next, we put forth several symmetry testing algorithms that estimate what we
call ‘maximum symmetric fidelities.’ We study several different symmetry exam-
ples, including cyclicity, permutation, and others. A major contribution of this
study is the connection of the symmetry testing algorithms to the computational
complexity hierarchy. We provide proofs that symmetry testing algorithms are
complete for different complexity classes.

In the last study, we explore different qubit encoding techniques for translat-
ing nuclear physics problems to quantum computers. We analyze the various
trade-offs and show that one encoding outperforms that others in all the relevant
metrics.

For all the studies above, we simulate the algorithms in the noiseless and noisy
scenarios and show robust convergence for the examples considered.
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Chapter 1

Introduction and brief history

The more important fundamental laws and facts of physical science have all
been discovered, and these are now so firmly established that the possibility of
their ever being supplanted in consequence of new discoveries is exceedingly
remote.
– Albert A. Michelson, 1894

Anyone who is not shocked by quantum theory has not understood it.
– Neils Bohr (Widely attributed; expresses Bohr’s views from the
1920s-30s on the strangeness of quantum mechanics.)

The goal of this chapter is to provide an overarching introduction to various
ideas and concepts. We begin with a very short journey into the history of quan-
tum mechanics and, more focusedly, quantum computing. This journey will nec-
essarily have to be brief, but I shall try to cover all the relevant landmarks.

The origins of quantum mechanics begin with a light bulb. In 1900, Max Planck
was attempting to design a light bulb that emits the maximum amount of energy
in the visible spectrum, as opposed to the other regions, like ultraviolet and in-
frared. To do this, he tried to theoretically model what the energy spectrum of
a hot body would look like at different temperatures. Using the strongly estab-
lished wave theory of light by James Clark Maxwell, he derived a function that
looks like Figure 1.1.

1



Figure 1.1: Schematic of the spectral radiance function derived by Max Planck and
others.

This was called the “ultraviolet catastrophe” because it predicted an un-
bounded amount of energy that is emitted by a hot body at high frequencies, a
prediction that was in stark contrast with the observed data. In an ‘act of despair’,
Max Planck proposed a new model, working backwards from the experimental
data. He proposed a theory that light is emitted in packets, called quanta, and not
continuously. The frequency of the light determines the energy of the packet. The
total energy is split into packets of different sizes based on their frequency. The
larger the frequency, the more energy it will contain, but there will be a smaller
number of such large packets. The two effects compete with each other and lead
to a different expected function of energy as a function of frequency, as seen in Fig-
ure 1.2. Increasing the temperature increased the overall average frequency, but
at large frequencies, the energy density goes to zero, avoiding the catastrophe.
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Figure 1.2: Experimentally observed light distribution, in excellent agreement
with Max Planck’s new theory.

In 1095, Albert Einstein advanced this hypothesis that light comes in pack-
ets, showing that it theoretically explains the photoelectric effect. When light was
shone on a metal surface, electrons were ejected from it, and the number of elec-
trons can be measured. Classical wave theory predicted that the number of elec-
trons would be proportional to the intensity of the incoming light. However, it
was observed that the energy of the ejected electrons was independent of the in-
tensity of light. Furthermore, a minimum frequency of light was required to begin
ejecting electrons. All of this was explained by Einstein using the equation

E = hν, (1.1)

where E is the energy of a light packet, ν is its frequency, and h is a fundamental
constant, which was named Planck’s constant.

3



So something weird was going on with light. In some experiments, like diffrac-
tion and interference, it behaved like a wave. In contrast, in experiments like the
photoelectric effect, it behaved as a particle. In 1924, Louis de Broglie proposed a
radical idea. If light can behave as both a particle and a wave, maybe matter could
also behave as both! He postulated that a matter particle with momentum p has a
wavelength

λ =
h
p
. (1.2)

This hypothesis was tested and confirmed by experiments like Young’s
double-slit experiment and the Davisson-Germer experiment, which both showed
that electrons displayed an interference pattern! To explain the wave nature, Er-
win Schrödinger, in 1926, proposed the idea of the wavefunction. This was a math-
ematical object that contains all the information about a system. In addition, he
put forth the equation known as Schrödinger’s wave equation: for a particle of
mass m in a potential V(x), the equation reads

i~
∂

∂t
ψ(x, t) =

(
−
~2

2m
∂2

∂x2 + V(x)
)
ψ(x, t). (1.3)

The wavefunction ψ(x, t) doesn’t describe the particle’s position directly. The
absolute square of the wavefunction |ψ(x, t)|2 is the probability density of finding
the particle at position x at time t. Simultaneously, Werner Heisenberg developed
a matrix mechanics representation of quantum mechanics, which was later shown
to be equivalent to Schrödinger’s wave mechanics representation.

Quantum mechanics grew in fame and became the most successful theory ever
proposed. However, there were prominent scientists, Einstein included, who were
unsatisfied with the implications of quantum theory. For example, quantum the-
ory predicts the existence of entangled states (which we will discuss in detail in
the next chapter), where the state of one particle is intimately linked to the state
of another, independent of the distance between them.

Einstein famously referred to this as “spooky action at a distance.” He, along
with Podolsky and Rosen, proposed a thought experiment (now known as the
EPR paradox) to argue that quantum mechanics must be incomplete. They pre-
dicted that there had to be some local hidden variables determining the outcomes
behind the scenes, preserving locality and determinism. To resolve the paradox,
John Bell (1964) formulated a test that any local hidden variable theory must sat-
isfy. Quantum mechanics, on the other hand, was shown to violate these condi-
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tions. Decades later, experiments confirmed these violations. This was the final
nail in the coffin and strongly suggests that nature cannot be both local and real.
Thus, quantum theory not only replaced Newtonian certainty with probabilistic
outcomes — it also fundamentally changed our notions of reality, causality, infor-
mation, and computation.

In Section 2.4, we delve into the idea of computation and what it means. For
now, we think of computation as anything that we can do on anything ranging
from a small calculator to a large supercomputer. The underlying principle is
that all of these devices are based on classical mechanics. In 1982, Richard Feyn-
man proposed the idea that to simulate quantum systems, a computer based on
quantum principles might be more efficient [Fey82]. This led to the development
of a universal quantum computer by David Deutsch in 1985 [Deu85]. A universal
quantum computer could do anything a classical computer could do, with the ‘po-
tential’ added advantages of quantum mechanics. In 1994 and 1996, two impor-
tant algorithms called Shor’s algorithm [Sho97] and Grover’s algorithm [Gro96b]
were proposed to solve the prime fractorization and unstructured search prob-
lems more efficiently than the best known classical algorithm for these problems.
This was one of the earliest examples of the idea of ‘quantum advantage.’

There are multiple different possible realizations of quantum computers that
are based on different architectures. Examples include ion traps, neutral atoms,
superconducting circuits, and photonics. Different research labs and companies
have made significant progress towards universal scalable quantum computers.
Note that in this thesis, we will focus on top-level discussions of algorithms and
circuits that do not depend on the underlying quantum computer.

With this brief historical context in place, we now turn to the central focus
of this thesis. This work is structured around three main pillars: distinguisha-
bility, symmetry, and energy estimation. In each of the corresponding chapters,
we develop quantum algorithms to estimate relevant quantities and analyze their
computational complexity. Furthermore, in each chapter, we formally introduce
the concepts required and talk about the impact and applications of the chap-
ter. Where appropriate, we include numerical simulations to illustrate the perfor-
mance of these algorithms. The source code used for these simulations is available
online.
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Chapter 2

Mathematical preliminaries

The goal of this chapter is to present a brief introduction to a few different topics
that are key to understanding the remainder of this thesis. In Section 2.1, we begin
with an introduction to quantum computing and the different objects commonly
used in any quantum computation. Following this, in Section 2.2, we talk about
distance measures, like trace distance and fidelity. Next, in Section 2.3, we discuss
group and representation theory, two seemingly abstract mathematical fields that
are extremely relevant to real physical systems. In Section 2.4, we delve into com-
plexity theory, which is all about classifying the difficulty of problems. Lastly, in
Section 2.5, we discuss variational quantum algorithms, a paradigm of quantum
computing that is more suited to devices available now and forms the basis of all
the algorithms in this thesis.

2.1 The language of quantum computing

Quantum mechanics is spoken in the language of linear algebra. It is based on
a set of postulates and is considered the most well-tested theory that explains
the universe. The postulates of quantum mechanics specify the playground, the
evolution, the measurement, and other key pillars to the theory. One important
aspect of quantum mechanics that sets it apart from classical mechanics is that it
is random. “Quantum mechanics is an inherently probabilistic theory," but what
does this statement mean exactly? To satisfactorily answer this question, we first

6



begin with classical probability.

Consider a coin that may or may not be weighted. Let the probability of getting
heads (H) be p. Since the total probability must be 1, the probability of tails (T)
must be 1 − p. For example, consider a coin that always lands with H facing up.
This corresponds to p = 1, and we call such a coin H. Similarly, we define the
all-tails coin, with p = 0, T. A system with two outcomes, like our coin, is called a
bit.

We now give a geometric interpretation to this idea. Since a single parameter
0 ≤ p ≤ 1 represents the coin, we use a one-dimensional vector (say pointing along
the z-axis). Define z = 2p − 1, and any coin is represented as a vector with base at
the origin and the other end at z. The extreme cases H and T are represented by
Figure 2.1.

H 7→ z = 1,
T 7→ z = −1. (2.1)

But what about the points with −1 < z < 1? We now show that any bi-
ased/weighted coin can be represented as a mixture of H and T and has −1 <
z < 1. A fair coin, with p = 0.5 is represented by an equal mixture, and the corre-
sponding point on the line is the origin z = 0.

We now formalize what we mean by a “mixture.” A general coin can be repre-
sented by

C = pH + (1 − p)T, (2.2)

which can be thought of as a weighted mixture of the endpoints. This equation is
more general, but we can see it in action by substituting for H and T in terms of z.
We see that for any coin

C = pH + (1 − p)T
→ p(1) + (1 − p)(−1)
= 2p − 1
= z, (2.3)

as expected. Crucially, setting p = 0.5 (z = 0) gives the state

Cfair = 0.5H + 0.5T. (2.4)

The coefficients p and 1 − p are probabilities themselves and are real numbers.
Figure 2.2 shows this one-dimensional representation.
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H

T

0

z

Figure 2.1: One-dimensional system representing a bit or a coin. z = 1 represents
H, and z = −1 represents T, where z = 2p − 1.

Here is where we depart from classical probability and step into quantum me-
chanics. A quantum mechanical two-level system is called a qubit. A qubit no
longer lives on a one-dimensional line, like a bit. A qubit lives somewhere in or
on a sphere of radius one. This sphere is called the Bloch sphere. The North
Pole is represented by |H〉 ≡ |0〉, and the South Pole is represented by |T 〉 ≡ |1〉.
This notation is called the Dirac braket notation, and is the de facto method to
mathematically represent quantum states.

States on the surface of the sphere are called pure states, and states within the
sphere are called mixed states. For now, we restrict ourselves to just pure states.
Just like the surface of the globe, to label any point on the surface of a sphere, we
need to specify two parameters, the latitude and longitude.
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H

T

0

z

Figure 2.2: A classical bit, plotted as a one-dimensional system. All the points in
blue represnt a valid biased coin.

Pure states are complex superpositions of the states |0〉 and |1〉. In other words,
any pure state |ψ〉 can be written as

|ψ〉 = α |0〉 + β |1〉 , (2.5)

where α and β are complex numbers. Unlike classical bits, qubits need to be mea-
sured to figure out what state they are in, and this measurement affects the state
of the qubit itself. For example, for the state |ψ〉 above, the probabilities for mea-
suring (0) and (1) are given by

p(0) = |α|2,

p(1) = |β|2, (2.6)

9



Figure 2.3: Bloch sphere with some special states labelled.

and after the measurement, the state ‘collapses’ to the state |0〉 or |1〉 depending on
what outcome occurs. The coefficients α and β are not probabilities, but probabil-
ity amplitudes.

In the case of the coin, the only relevant question is whether the side up is H
or T. There is only ‘one’ question, which has two possible outcomes. The coin is
either H or T side up. The key operative word here is “or.” In sharp contrast,
quantum mechanics allows us to ask an interesting variety of questions. For a
qubit, one can pick any axis of interest and then measure the qubit along this axis,
as opposed to just the z-axis for the classical case. There are still just two outcomes,
which one can call 0 and 1, similar to H and T.

Consider the case where the state is given by

|ψ〉 =
1
√

2
(|0〉 + |1〉). (2.7)

When measured along the z-axis, the probabilities for both outcomes 0 and 1 can
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be calculated using (2.6) and are both 0.5. This seems very similar to the state of
a fair coin (2.4). However, we can now measure along the x-axis! Similar to |0〉
and |1〉 being the north and south poles along the z-axis, the corresponding poles
along the x-axis turn out to be |0〉x ≡ 1

√
2
(|0〉 + |1〉) and |1〉x ≡ 1

√
2
(|0〉 − |1〉). Thus, the

given state |ψ〉 is just
|ψ〉 = |0〉x . (2.8)

Thus, measuring along this axis gives us 0 with unit probability! This is clearly
different from the case of a fair coin. In this example, we say that the qubit is both
0 and 1 at the same time, since we are allowed to ask a different set of questions.
Mathematically, we say that the state |ψ〉 is in a superposition of the states |0〉 and
|1〉.

So what is the difference between a superposition and a mixture? A su-
perposition of states is a “fixed” state in the sense that there exists a measure-
ment that gives one of the outcomes with unit probability. Using the example
above, measuring the |0〉x in the x direction gives 0 with unit probability. For
other measurement directions, the outcome is not deterministic, like measuring
in the z-direction. Unlike a superposition, a mixture of states always gives a non-
deterministic outcome distribution. A mixture can be thought of as layering clas-
sical randomness on top of the inherent quantum randomness. We will soon see
that a mixture of pure states leads to mixed states — states that are within the
sphere and no longer on the surface.

Let us look at a concrete example that will help clarify some details. In scenario
1, consider a black box that outputs one of two states – the |0〉 state with probability
0.5, and the |1〉 state with probability 0.5. We are to measure the quantum state
along the x-axis, and for each 0 we see, we add 1 to the total, and for each 1 we
see, we add a −1 to the total. To simplify the calculations, we express |0〉 and |1〉 in
terms of |0〉x and |1〉x.

|0〉 =
1
√

2
(|0〉x + |1〉x),

|1〉 =
1
√

2
(|0〉x − |1〉x). (2.9)

The proability of measuring 0, using the law of total probability, is given by

p(0) = p(|0〉) ∗ p(0 | |0〉) + p(|1〉) ∗ p(0 | |1〉) = 0.25 + 0.25 = 0.5, (2.10)
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and the proability of measuring 1 is given by

p(1) = p(|1〉) ∗ p(1 | |0〉) + p(|1〉) ∗ p(1 | |1〉) = 0.25 + 0.25 = 0.5. (2.11)

In the two equations above, we use the notation p(i| | j〉) to mean the probability of
getting outcome i if the state is | j〉. Thus, the expected value is given by

p(0) ∗ 1 + p(1) ∗ (−1)
= 0.5 ∗ 1 + 0.5 ∗ (−1)
= 0. (2.12)

In the second scenario, the box spits out the state 1
√

2
(|0〉 + |1〉) with unit prob-

ability. We still use the same procedure – measure the quantum state along the
x-axis, and for each 0 we see, we add 1 to the total, and for each 1 we see, we add
a −1 to the total. In this scenario, the input state is the |0〉x state. Thus, we always
get 0 when we measure! Thus, the expected value is given by

p(0) ∗ 1 + p(1) ∗ (−1)
= 1 ∗ 1 + 0 ∗ (−1)
= 1. (2.13)

Comparing (2.12) and (2.13), we see that a classical mixture of |0〉 and |1〉 and
superposition of |0〉 and |1〉 are different objects! We leave it to the reader to try the
same experiment but measure along the z-axis. In such a setting, the result of the
two scenarios would be exactly the same. The ability to measure along the x-axis
shows us a clear departure from the classical regime!

With this intuition in place, we now introduce the mathematical machinery
of quantum mechanics. Quantum mechanics is built on the theory of linear al-
gebra. Before we proceed, we assume that the reader understands the follow-
ing non-exhaustive set of concepts – vectors, vector spaces, matrices, bases, inner
products, eigenvectors, adjoints, functions of operators, trace of an operator, and
tensor products. All of these topics can be found in any textbook on linear alge-
bra, but we recommend [NC10, Section 2.1]. For ease of reference and notation,
we summarize some of the notation in Table 2.1.

The postulates of quantum mechanics can be stated in two ways – for pure
states and for mixed states. We begin with the pure state version since it is more
digestible. However, the mixed state version is more complete, and we will jot
them down as well.
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Notation Description
z∗ Complex conjugate of the complex number z.
|ψ〉 Vector. Also known as a ket.
〈ψ| Vector dual to |ψ〉. Also known as a bra.
〈φ|ψ〉 Inner product between the vectors |φ〉 and |ψ〉
|φ〉 ⊗ |ψ〉 Tensor product of |φ〉 and |ψ〉

A∗ Complex conjugate of the A matrix
AT Transpose of the A matrix
A† Hermitian conjugate of the A matrix, A† = (AT )∗

〈φ|A|ψ〉 Inner product between |φ〉 and A |ψ〉
Tr(A) Trace of the matrix A, the sum of the diagonal values

Table 2.1: Basic terms and descriptions. Table from [NC10, Section 2.1].

2.1.1 The postulates of quantum mechanics - pure states

1. Quantum states are unit vectors that belong to a Hilbert space. A Hilbert
space is a vector space with an inner product defined on it (there are some
more conditions, but they rarely appear, and we invite the interested reader
to explore the conditions further). The condition that a quantum state |ψ〉 is
a unit vector is represented as

〈ψ|ψ〉 = 1. (2.14)

2. Quantum states evolve from one state to another by application of unitary
operators. Unitary operators are operators that act on the underlying Hilbert
space with U† = U−1. This property of unitary operators preserves the length
of a vector. Mathematically, if a state |ψ〉 evolves into state |φ〉 under the
operation of a unitary U, we denote this as

|φ〉 = U |ψ〉 , (2.15)

and

〈φ|φ〉 = 〈ψ|U†U |ψ〉 (2.16)

= 〈ψ|(U−1U)|ψ〉 (2.17)
= 〈ψ|ψ〉 (2.18)
= 1. (2.19)
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3. A measurement is a set of operators {Mm} that obey the completeness con-
dition —

∑
m M†

mMm = I. The different m values represent the different mea-
surement outcomes possible, and Mm is the operator corresponding to the
measurement outcome. A quantum measurement is inherently probabilis-
tic, i.e., the particular outcome cannot be known beforehand. Furthermore,
once measured, the quantum state collapses to a different state, which we
call the post-measurement state. The probability of outcome m is given by

p(m) = 〈ψ|M†
mMm|ψ〉, (2.20)

and if the outcome m occurs, the post-measurement state is given by

|ψm〉 =
1√
p(m)

Mm |ψ〉 . (2.21)

We note that the completeness relation is just a recasting of the fact that∑
m p(m) = 1.

4. Multiple systems can be thought of as a state in a tensor product Hilbert
space. Consider two systems with states |ψ1〉 and |ψ2〉 that lie in their corre-
sponding Hilbert spaces H1 and H2, respectively. Then, the overall state of
the two systems is given by |ψ1〉⊗|ψ2〉 belonging to the Hilbert spaceH1⊗H2.

Let us re-examine the system we defined above – the qubit. A qubit is the
smallest quantum mechanical system, and the underlying Hilbert space is a two-
dimensional complex vector space H . A qubit is represented by a column vector
of two complex numbers

|ψ〉 =

[
α
β

]
. (2.22)

We know that there are infinitely many bases for this Hilbert space, but one of
particular interest is called the computational basis, and most of quantum com-
puting is expressed in the computational basis. It consists of two basis states we
have already seen!

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. (2.23)

Thus, any qubit can be written as

|ψ〉 = α |0〉 + β |1〉 . (2.24)

Refer back to Figure 2.3 to see where |0〉 and |1〉 lie.
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Quantum states evolve using unitary operators. We discuss unitary operators
and their properties in Section 2.1.2. Unitary operators correspond to rotations,
and this provides the intuition as to why they preserve lengths.

Lastly, we discuss measurements. We already saw an example of measure-
ments along different axes, which we now put in the framework of postulate 3. A
measurement along the z-axis is given by the measurement operator set Mz with
operators

Mz = {M0 = |0〉〈0|,M1 = |1〉〈1|}. (2.25)
Consider the scenario where we want to measure the quantum state |0〉 using Mz.
The measurement probabilities and the post-measurement states are then

p(0) = 〈0|
(
|0〉〈0|†|0〉〈0|

)
|0〉 (2.26)

= 1. (2.27)
|ψ0〉 = |0〉 . (2.28)

p(1) = 〈0|
(
|1〉〈1|†|1〉〈1|

)
|0〉 (2.29)

= 0. (2.30)
|ψ1〉 = |1〉 . (2.31)

(2.32)

This is a special case, and the outcome is always 0. If instead the input state is the
|+〉, the measurement probabilities and the post-measurement states are then

p(0) = 〈+|
(
|0〉〈0|†|0〉〈0|

)
|+〉 (2.33)

= 0.5. (2.34)
|ψ0〉 = |0〉 . (2.35)

p(1) = 〈−|
(
|1〉〈1|†|1〉〈1|

)
|−〉 (2.36)

= 0.5. (2.37)
|ψ1〉 = |1〉 . (2.38)

Lastly, we discuss two-qubit states and some two-qubit operators. From Pos-
tulate 4, we know that two-qubit states belong to the tensor product Hilbert space
H1 ⊗ H2. A simple example of a two-qubit state is |0〉1 ⊗ |0〉2. For the sake of no-
tational simplicity, this state is usually depicted as |00〉. Another important two-
qubit state is the Bell state ∣∣∣Φ+〉 =

1
√

2
(|00〉 + |11〉) . (2.39)
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This state is special in the sense that it is not factorable into two states |ψ1〉 and
|ψ2〉 such that |Φ+〉 = |ψ1〉 ⊗ |ψ2〉. To prove this, let |ψ1〉 = α |0〉 + β |1〉 and let |ψ2〉 =

γ |0〉 + δ |1〉. Using the properties of the tensor product, we see that

|ψ1〉 ⊗ |ψ2〉 = αγ |00〉 + αδ |01〉 + βγ |10〉 + βδ |11〉 . (2.40)

For this state to be equal to |Φ+〉, we need

αγ =
1
√

2
(2.41)

αδ = 0 (2.42)
βγ = 0 (2.43)

βδ =
1
√

2
, (2.44)

which is impossible. States of this form, i.e., states that cannot be factored into
individual states, are called entangled states. Entangled states play a vital role
in quantum computing and information, and we will delve more into entangled
states in a later section.

2.1.2 Hermitian and unitary operators

In this section, we discuss the properties of Hermitian and unitary operators, since
they are of vital importance in quantum computing. Furthermore, we introduce
several important Hermitian and unitary operators that appear often in quantum
algorithms.

Hermitian matrices are those that are their own Hermitian conjugate, i.e., H =

H†. Hermitian matrices have several important properties:

1. The eigenvalues of Hermitian operators are all real.

2. The eigenvectors of a Hermitian operator form a complete orthonormal ba-
sis.

Together, these properties allow for a spectral decomposition of any Hermitian
operator H in terms of its eigenvalues and eigenvectors:

H =
∑

i

λi|ψi〉〈ψi|. (2.45)
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Furthermore, Hermitian operators can be measured by defining a measurement
operator as follows:

MH B {|ψi〉〈ψi|}i. (2.46)

An important class of Hermitian operators are the Pauli matrices:

X ≡ σX B

[
0 1
1 0

]
, (2.47)

Y ≡ σY B

[
0 −i
i 0

]
, (2.48)

Z ≡ σZ B

[
1 0
0 −1

]
. (2.49)

As discussed in Postulate 2 in Section 2.1.1, a unitary operator U has the prop-
erty UU† = I. Unitary operators preserve the length of vectors. Unitary operators
can be generated from Hermitian operators via the matrix exponential

U = exp(−iH), (2.50)

where H is a Hermitian operator. Using the above connection, corresponding to
each Pauli matrix is a unitary operator:

RX(θ) B exp
(
−i
θ

2
X
)
, (2.51)

RY(θ) B exp
(
−i
θ

2
Y
)
, (2.52)

RZ(θ) B exp
(
−i
θ

2
Z
)
. (2.53)

Using properties of the matrix exponential, we can show that

Ri(θ) B exp
(
−i
θ

2
σi

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
σi, (2.54)

where i ∈ {X,Y,Z}. Furthermore, we can show that its action on a qubit is to rotate
it about the specified axis X,Y,Z, giving it its name.

An important example of a unitary operator is the Hadamard operator

H =
1
√

2

[
1 1
1 −1

]
. (2.55)
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Its action on the computational basis is given by

|+〉 B H |0〉 =
1
√

2
(|0〉 + |1〉) (2.56)

|−〉 B H |1〉 =
1
√

2
(|0〉 − |1〉), (2.57)

which we already met as |0〉x and |1〉x. These two states (the north and south poles
along the x-axis) together form the Hadamard basis.

A common two-qubit gate is the CNOT gate. This gate flips the second qubit if
the first qubit is in the state 1. Expanding, the action of the CNOT gate is written
as:

CNOT12 |00〉 = |00〉
CNOT12 |01〉 = |01〉
CNOT12 |10〉 = |11〉
CNOT12 |11〉 = |10〉 , (2.58)

where CNOT12 denotes a controlled-NOT gate using qubit 1 as the control and
qubit 2 as the target.

2.1.3 The postulates of quantum mechanics - mixed states

In Section 2.1.1, we saw that a pure quantum state is a unit vector in a Hilbert
space. If a system is represented by a pure state, we say that we have complete
knowledge of the system. The measurement outcomes of any measurement, the
evolution of the system, and other properties can be calculated using the pure
state vector.

On the other hand, more realistically, a quantum system about which we only
have partial knowledge is represented by a mixed state. This partial knowledge
could arise from losing a part of a quantum system or some classical probabilistic
ensemble, like the box spitting out quantum states in the previous section. The
mixed state formalism is a method to combine all these ‘uncertainties’ about the
quantum system into a single package. We will make this idea more concrete in
this section.

Let us look back at the example of a box that spits out the quantum state |ψi〉

with some probability pi. The box is then represented by an ensemble of quantum
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states {(pi, ψi)}. Let’s say we would like to measure the output of the box using a
measurement {Mm}. The probability of outcome m j is given by

p(m j) =
∑

i

p(m j|ψi) × pi (2.59)

=
∑

i

〈ψi|M
†

j M j|ψi〉pi (2.60)

=
∑

i

Tr[M†

j M j|ψi〉〈ψi|]pi (2.61)

= Tr

M†

j M j

∑
i

pi|ψi〉〈ψi|

 . (2.62)

Looking at this final equality, we see that all the information of the ensemble is
present in this object within the regular brackets. This leads to a natural definition
of the density operator to be the object

ρ B
∑

i

pi|ψi〉〈ψi|. (2.63)

This is no longer a vector but is a matrix. What about the post-measurement state?
If the input state was |ψi〉 and the outcome was m j, the post-measurement state is∣∣∣∣ψi

m j

〉
=

1√
p(m j|ψi)

M j |ψi〉 . (2.64)

So if the measurement outcome m j occurred, we end up with an ensemble{(
p(ψi|m j),

∣∣∣∣ψi
m j

〉)}
. (2.65)

The density matrix corresponding to this ensemble is thus

ρ j =
∑

i

p(ψi|m j)|ψi
m j
〉〈ψi

m j
| (2.66)

=
∑

i

p(ψi|m j)
1

p(m j|ψi)
M j|ψi〉〈ψi|M

†

j . (2.67)

Using the fact that

p(ψi|m j) =
p(ψi,m j)

p(m j)
=

p(m j|ψi)pi

p(m j)
, (2.68)
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the output density matrix is thus

ρ j =
1

p(m j)

∑
i

M j|ψi〉〈ψi|M
†

j (2.69)

=
M jρM†

j

Tr[M†

j M jρ]
. (2.70)

We note that the special case of a pure state |ψ〉 is represented by a deterministic
ensemble of the form {(1.0, |ψ〉)}, and the corresponding density operator is ρ =

|ψ〉〈ψ|.

The ‘revised’ postulates of quantum mechanics that include mixed states are
as follows:

1. Quantum states are represented by density operators/matrices, which are
positive matrices with unit trace. Mathematically, the conditions on a den-
sity operator are

ρ ≥ 0 : Positivity (2.71)
Tr[ρ] = 1 : Unit Trace. (2.72)

2. Quantum states evolve from one state to another by application of unitary
operators. Mathematically, if a state ρ evolves into state ω under the opera-
tion of a unitary U, we denote this as

ω = UρU†. (2.73)

3. A measurement is a set of operators {Mm} that obey the completeness con-
dition —

∑
m M†

mMm = I. The different m values represent the different mea-
surement outcomes possible, and Mm is the operator corresponding to the
measurement outcome. A quantum measurement is inherently probabilis-
tic; i.e., the particular outcome cannot be known beforehand. Furthermore,
once measured, the quantum state collapses to a different state, which we
call the post-measurement state. The probability of outcome m is given by

p(m) = Tr[M†
mMmρ], (2.74)

and if the outcome m occurs, the post-measurement state is given by

ρm =
MmρM†

m

Tr[M†
mMmρ]

. (2.75)
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We note that the completeness relation is just a recasting of the fact that∑
m p(m) = 1.

4. Multiple systems can be thought of as a state in a tensor product Hilbert
space. Consider two systems with states ρ1 and ρ2 that belong to the set of
operators that act on their corresponding Hilbert spaces H1 and H2, respec-
tively. Then, the overall state of the two systems is given by ρ1 ⊗ ρ2, which
acts on the tensor product Hilbert spaceH1 ⊗H2.

Finally, we are in a position to fully investigate the quantum box example from
before. The first scenario was a box that spits out one of the two states {|0〉 , |1〉},
with equal probability, and we measure along the x-axis. With our new knowledge
of density matrices, we know that the density matrix for this box is given by

ρ = 0.5 · |0〉〈0| + 0.5 · |1〉〈1|, (2.76)

and the measurement is given by {M0 = |+〉〈+|,M1 = |−〉〈−|}. Thus, the probabilities
are

p(0) = Tr[M†

0 M0ρ] (2.77)
= 0.5, (2.78)

p(1) = Tr[M†

1 M1ρ] (2.79)
= 0.5, (2.80)

which agrees with our derivation before. On the other hand, the second scenario
has the density matrix |+〉〈+|, and the measurement probabilities are

p(0) = Tr[M†

0 M0|+〉〈+|] (2.81)
= 1.0, (2.82)

p(1) = Tr[M†

1 M1|+〉〈+|] (2.83)
= 0.0, (2.84)

again agreeing with our previous derivation.

The state π B 1
2 (|0〉〈0|+ |1〉〈1|) is a special qubit state called the maximally mixed

state, and in the Bloch sphere it is represented by the center of the sphere. We
leave it as an exercise to show that the maximally mixed state can be realized by
an equal mixture of any pair of poles on the sphere. An example of this is that

{(0.5, |0〉〈0|), (0.5, |1〉〈1|)} ≡ π =
1
2

(|0〉〈0| + |1〉〈1|) (2.85)

{(0.5, |+〉〈+|), (0.5, |−〉〈−|)} ≡ π =
1
2

(|+〉〈+| + |−〉〈−|). (2.86)
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Thus, both of these ensembles lead to the exact same measurement outcomes and
are indistinguishable from each other.

Looking now at Figure 2.4, we now see that pure states are states that are on
the surface of the sphere, and the state of the system is perfectly known. On the
other hand, mixed states are inside the sphere, and the state is not exactly known,
with the extreme case being the maximally mixed state at the center.

Another important characterization of mixed states is in the form of purifica-
tions. Any mixed state ρA can be expressed as a subsystem of a larger pure state
ψRA. In other words:

ρA = TrR[|ψ〉〈ψ|]RA. (2.87)

This further solidifies the idea that mixed states represent incomplete knowledge
of a quantum system.

2.1.4 Studying subsystems

The density matrix allows us to incorporate classical mixtures into the model that
we use. However, the biggest advantage of the density matrix model is the study
of subsystems. Consider a quantum state ρAB that is shared by two parties, Alice
and Bob. An important question in such a scenario is to find the measurement
statistics when Alice, or Bob, measures their share of the quantum state ρAB.

Concretely, consider the case where Alice measures her share of the system
using the measurement operator M = {Mm}. Thus, the overall measurement is
given by

M′
m = {MA

m ⊗ I
B}, (2.88)

which we argue is the intuitive idea that Alice locally measuring her system does
nothing to Bob’s system, represented by the identity operator IB. Thus, the mea-
surement probabilities are given by

p(m) = Tr[(M′
m)†M′

m ρAB] (2.89)

= Tr[((MA
m)† ⊗ IB)(MA

m ⊗ I
B)ρAB]. (2.90)

The trace operation, which is the sum of diagonal elements, for a two-system
operator XAB is given by

Tr[XAB] =
∑

i

∑
j

〈i|A〈 j|BXAB|i〉A| j〉B. (2.91)
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|0〉〈0|

|1〉〈1|

|+〉〈+|

|−〉〈−|
1
2(|0〉〈0| + |1〉〈1|)

Figure 2.4: Bloch sphere - mixed states.

We now define the partial trace operation with respect to system B to be

TrB[XAB] B
∑

j

(IA ⊗ 〈 j|B)XAB(IA ⊗ | j〉B). (2.92)

This is very similar to the usual trace operation, with the main difference being
that we only trace over the B index j. Using this new notation, we see that the
overall trace can be written as a combination of the two partial traces

Tr[XAB] = TrA[TrB[XAB]]. (2.93)
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Thus, the probabilities p(m) are given by

p(m) = TrA[TrB[((MA
m)† ⊗ IB)(MA

m ⊗ I
B)ρAB]] (2.94)

= TrA[(MA
m)†MA

m TrB[ρAB]], (2.95)

where the second equality can be arrived at by using the definition of the partial
trace TrB. Using this equation as a hint, we define the reduced density matrix ρA

to be
ρA B TrB[ρAB], (2.96)

and the measurement statistics are given by

p(m) = TrA[(MA
m)†MA

m ρA]. (2.97)

This equation only depends on the system in Alice’s possession. We argue that
the partial trace operation TrB gives a description of the state of the qubit in Alice’s
possession. While this intuition given above is not a direct proof, we encourage
the reader to read the entire proof here [NC10, Box 2.6].

Let us look at an interesting example of calculating the reduced operator of the
Bell state ∣∣∣Φ+〉

AB
=

1
√

2
(|00〉AB + |11〉AB), (2.98)

with the corresponding density operator

Φ+
AB B |Φ

+〉〈Φ+|AB (2.99)

=
1
2

[|00〉〈00|AB + |00〉〈11|AB + |11〉〈00|AB + |11〉〈11|]. (2.100)

Since this is a pure state, this means that the overall state is exactly known. Now,
let us look at Alice’s subsystem, given by ρA B TrB[Φ+

AB].

ρA = TrB[Φ+
AB] (2.101)

=
∑

j

(IA ⊗ 〈 j|B)Φ+
AB(IA ⊗ | j〉B) (2.102)

= (IA ⊗ 〈0|B)Φ+
AB(IA ⊗ |0〉B) + (IA ⊗ 〈1|B)Φ+

AB(IA ⊗ |1〉B) (2.103)

=
1
2

(|0〉〈0|A + |1〉〈1|A) (2.104)

= πA, (2.105)
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which is the maximally mixed state! Alice’s subsystem is maximally mixed, which
means the state of her subsystem is not perfectly known. To reiterate, the full state
|Φ+〉 is a pure state and is perfectly known, but her reduced state is maximally
mixed and is not known! This is a key signature of quantum entanglement – the
global state is known, but the local states are not.

2.1.5 Quantum channels

As seen in previous sections, pure states represent complete knowledge of a sys-
tem, and mixed states represent incomplete knowledge. Furthermore, any mixed
state can be written as an ensemble, or a convex combination of pure states.

In this section, we elevate unitaries using the same idea to quantum channels.
Unitaries represent ‘pure’ evolution, and quantum channels represent noisy evo-
lution. For an in-depth analysis of quantum channels, refer to [Wil17]. Quantum
channels are all-encompassing, in the sense that state preparation, noisy or noise-
less evolution, and measurement can all be represented as quantum channels.

A quantum channel is usually represented by a curly alphabet likeNA→B, with
A and B being the input and output Hilbert spacesHA andHB, respectively. Some-
times we drop the system labels if it is clear from the context. A general map needs
to satisfy several properties to be a valid quantum channel. These properties arise
from the condition that when a valid quantum state is inputted, the output must
also be a valid quantum state. The conditions are as follows:

1. Linearity - N(αρ + βσ) = αN(ρ) + βN(σ).

2. Trace Preservation - Tr[N(ρ)] = Tr[ρ].

3. Complete Positivity - (IR ⊗ NA)ρRA ≥ 0, for all systems R.

Any quantum channelN can be written in the Kraus representation as follows:

NA→B(·) B
k∑

i=1

Ki(·)K
†

i , (2.106)

with the condition that
k∑

i=1

K†i Ki = I. (2.107)

25



The special case where k = 1 is the channel

N(ρ) = K1ρK†1 , (2.108)

with K†1 K1 = I, implying that K1 is an isometry. Thus, unitary evolution is repre-
sented by a quantum channel with a single Kraus operator. This is reminiscent of
pure states being represented by ensembles with a single state with unit probabil-
ity.

The Stinespring dilation theorem states that any quantum channel N can be
thought of as unitary evolution of a larger system. More concretely,

NA(ρA) = TrR[URA(ρA ⊗ |0〉〈0|R)(URA)†], (2.109)

where U is a unitary operator on the larger Hilbert space HA ⊗ HR. This idea is
very similar to the purification idea of mixed states from (2.87).

2.1.6 Quantum circuit diagrams

Any quantum computation can be thought of as time-ordered operations involv-
ing input states, unitary gates, and final measurements. These algorithms can al-
ways be written down and analyzed using long equations using the Dirac braket
notation. However, an equivalent but much more intuitive model of computation
is quantum circuit diagrams.

Quantum circuit diagrams provide us with a quick, succinct method to rep-
resent quantum computations and are similar to classical circuit diagrams that
represent classical computation. Let us look at some classic examples to get an
idea of how to use quantum circuits.

Consider the preparation of the Bell state, which we saw to be∣∣∣Φ+〉 =
1
√

2
(|00〉 + |11〉)

= CNOT12 H1 |00〉12 . (2.110)

This equation is more easily understood from the circuit diagram in Figure 2.5.
Note that the figure has time running from left to right, whereas the equation has
time running from right to left.

Another example we have seen before is a measurement in the z-axis of the |+〉
state. This is represented in Figure 2.6.
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|0〉 H

|0〉

Figure 2.5: Bell-state preparation quantum circuit.

|0〉 H

Figure 2.6: Quantum circuit for measuring the |+〉 state in the z-basis

2.2 Distance measures

In this section, we discuss various distance measures that are commonly used to
compare quantum states, channels, and other objects. These measures give us a
way to quantify how similar/different two objects are and are often the important
metrics for the success of quantum computation. For example, given a protocol to
prepare a quantum circuit and a physical realization of the circuit, how different
are the outputs?

In this section, we describe and discuss several important measures, which all
stem from two base quantities – the fidelity F and the trace distance ‖ · ‖1.

Definition 2.1 [Normalized Trace Distance]. The normalized trace distance between two
states ρ and σ is denoted by

1
2
‖ρ − σ‖1, (2.111)

where ‖X‖1 is called the trace norm and is defined as

‖X‖1 B Tr
[√

X†X
]
. (2.112)
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The trace distance between two states can be intuitively thought of as how dif-
ferent two states are. This intuition is useful in deriving several properties of the
trace distance and the trace norm [Wil17]. We summarize some of the important
ones here.

1. Non-negativity - ‖X‖1 ≥ 0 and ‖X‖1 = 0 ⇐⇒ X = 0.

2. Triangle Inequality - ‖X + Y‖1 ≤ ‖X‖1 + ‖Y‖1.

3. Unitary Invariance - ‖ρ−σ‖1 = ‖UρU†−UσU†‖1. This further proves that uni-
taries represent ‘pure’ evolutions, as discussed in Section 2.1.5. The distance
of two states cannot change under a unitary operation.

4. Data Processing - Given a quantum channel N , ‖N(ρ) − N(σ)‖1 ≤ ‖ρ − σ‖1.
Again, as discussed in Section 2.1.5, quantum channels are noisy evolutions
and can only make two states more indistinguishable.

The trace distance has an operational interpretation in terms of a hypothesis-
testing game. Say Alice picks one of two states, ρ0 and ρ1 with equal probability
p(0) = p(1) = 0.5. Let X be the random variable associated with this choice. She
then gives the chosen state to Bob, who has to perform a measurement Λ = {Λ0,Λ1}

and guess which state was prepared. The output guess is associated with the
random variable Y . The success probability, using the total probability theorem
and the measurement postulate 3 from 2.1.3, is given by

psucc(Λ) = pY |X(0|0)pX(0) + pY |X(1|1)pX(1)

=
1
2

(Tr[Λ0ρ0] + Tr[Λ1ρ1]) . (2.113)

Simplifying, this can be shown to be

psucc(Λ) =
1
2

(1 + Tr[Λ0(ρ0 − ρ1)]) . (2.114)

Bob, however, has freedom in choosing the measurement Λ, and thus, the optimal
success probability is given by

psucc B max
Λ

psucc(Λ)

=
1
2

(
1 +

1
2
‖ρ0 − ρ1‖1

)
, (2.115)
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where the last equality is due to another property of the trace distance, which
states that the trace distance can be thought of as a probability difference [Wil17,
Section 9.1.3]. If two states were the same, then the success probability is exactly
0.5 and Bob’s optimal strategy is to pick randomly. However, if the states are
perfectly distinguishable, the normalized trace distance has a value of 1, and so
does the success probability.

A related quantity is the diamond distance of channels, based on the diamond
norm. It measures the distance between two quantum channels and is based on
the trace distance. Similar to the game above, consider the scenario where Alice
sends a state ρA to Bob. Bob then picks one of two channels, NA→B orMA→B, with
equal probability and applies it to the state ρA. Bob then sends the state back to
Alice, who has to decide which channel was used. Using the same reasoning as
before, Alice’s success probability is

1
2

(
1 +

1
2
‖NA→B(ρA) −MA→B(ρA)‖1

)
. (2.116)

However, Alice has the choice of the input state ρA. Furthermore, she can further
improve her chances by sending one share of an entangled state. This leads to the
definition as follows:

Definition 2.2 [Normalized Diamond Distance]. The diamond distance of two channels
NA→B andMA→B is given by

‖NA→B −MA→B‖� B max
|ψ〉RA

‖NA→B(|ψ〉〈ψ|RA) −MA→B(|ψ〉〈ψ|RA)‖1 , (2.117)

where the size of the reference system R is equal to that of system A.

Next, we define the fidelity of two quantum states and some properties.
Definition 2.3 [Fidelity]. The Uhlmann fidelity of two quantum states ρA and σA is
given by

F(ρA, σA) B ‖
√
ρA
√
σA‖

2
1. (2.118)

The fidelity is intuitively a measure of closeness of states and has the following
non-exhaustive list of properties:

1. Symmetry - F(ρ, σ) = F(σ, ρ).

2. Bounds - 0 ≤ F(ρ, σ) ≤ 1. The upper bound is met if and only if the states
are equal.
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3. Pure states - For pure states, the fidelity reduces to the overlap F(ψ, φ) =

|〈ψ|φ〉|2.

4. Alternate characterization - The fidelity can be expressed as a maximization
over unitaries acting on the purifying subsystem

F(ρA, σA) = max
UR
|〈φρ|RAUR ⊗ IA|φ

σ〉RA|
2, (2.119)

where |φρ〉 and |φσ〉 are purifications of ρ and σ, respectively.

5. Unitary Invariance - F(ρ, σ) = F(UρU†,UσU†). This further proves that uni-
taries represent ‘pure’ evolutions, as discussed in Section 2.1.5. The close-
ness of two states cannot change under a unitary operation.

6. Data Processing - Given a quantum channel N , F(ρ, σ) ≤ F(N(ρ),N(σ)).
Again, as discussed in Section 2.1.5, quantum channels are noisy evolutions
and can only make two states closer.

7. Measurement Fidelity - There is an optimal measurement such that the
quantum fidelity is equal to the classical fidelity of the resulting distribu-
tion.

F(ρ, σ) = min
{Λx}

∑
x

√
Tr[Λxρ] Tr[Λxσ]

2

. (2.120)

Similar to the diamond distance of channels, we define the channel fidelity
here.

Definition 2.4 [Channel fidelity]. The channel fidelity of two channelsNA→B andMA→B

is given by

F(NA→B,MA→B) B min
|ψ〉RA

F(NA→B(|ψRA〉〈ψRA|),MA→B(|ψRA〉〈ψRA|)), (2.121)

and is a measure of the closeness of two channels.

2.3 Group and representation theory

In the previous sections, we learned the language of quantum mechanics and
quantum computing. The key playground was a Hilbert space – an inner product
vector space – and the objects living in them, state vectors. In this section, we
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study another set of mathematical objects called groups. Groups have a different
underlying structure as compared to vector spaces. Furthermore, we will explore
a brief introduction to representation theory, which will help us connect group
theory and our quantum systems.

Before we get into the mathematical prescription of group theory, let us look at
an illuminating example. Consider an equilateral triangle with points labelled A,
B, and C. We now ask the question – what operations can be done to this triangle
such that it is unchanged? For example, rotating it counterclockwise by 120◦ gives
the same triangle with just the points renamed. Let us call this operation r.

A

B C

A’

B’ C’

120◦

Figure 2.7: Operation r that rotates a triangle counterclockwise by 120◦.

Another symmetry of the triangle is flipping it across the vertical dotted line.
We call this operation f .

A

B C

A’

B’ C’

flip

Figure 2.8: Operation f that flips a triangle about its vertical axis.

It turns out that all possible symmetries of the triangle can be expressed as
combinations of the two operations f and r. We now list all the operations and
the orientation of the points A, B, and C after the operation, starting from the top,
then the left, and then the right point. Note that r2 refers to doing the r operation
twice, and r f refers to doing the f operation first followed by the r operation.

1. e − ABC → ABC.
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2. r − ABC → CAB.

3. r2 − ABC → BCA.

4. f − ABC → ACB.

5. f r − ABC → CBA.

6. f r2 − ABC → BAC.

These six operations {e, r, r2, f , f r, f r2} are the symmetries of the equilateral trian-
gle. The element e is a special element called the identity element and denotes the
‘do nothing’ operation. Another interesting fact is that every single operation has
a corresponding inverse operation – doing an operation followed by its inverse is
the same as doing nothing, i.e., the e operation. For example, the inverse of the
r operation is r2, since r2 ◦ r = r3 = e, since rotating thrice by 120◦ is the same as
not rotating at all. Similarly, the inverse of f is just itself, since f ◦ f = f 2 = e.
Lastly, any combination of these symmetry elements is also a symmetry and thus
belongs to the set. For example, consider r f r2 f 2 which can be simplified as

r2 f r2 f 2 = r2 f r2 f 2

= rr f r2

= r f r2r2

= f r2r2r2

= f , (2.122)

where we use the fact that r f = f r2.

Let us now generalize these ideas to general sets and operations on them.
Group theory is the study of a set of objects and an associated operation, called
multiplication, that obeys certain properties. A set G, with the binary operation ∗,
is a group if the following hold true:

1. Closure - ∀g1, g2 ∈ G, g1 ∗ g2 ∈ G.

2. Associativity - ∀g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3.

3. Identity - ∀g ∈ G, g ∗ e = e ∗ g = g.

4. Inverse - ∀g ∈ G, there exists an inverse g−1 such that g ∗ g−1 = e.
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We often suppress the operation ∗ if it is clear from context. While the set of rules
seems minimal, they significantly restrict what is considered a group and impose
strong conditions and properties. Let us look at one example of such a property.

Theorem 2.1 [Group Rearrangement Theorem]. Let G = {g1, g2, . . . , gk} be a group, and
let a be a member of the same group G. Then, the set of elements H = {ag1, ag2, . . . , agk}

are just a rearrangement of the elements in G.

Proof. First, we show that all the elements of G are in H. Pick an arbitrary element
g from G. Consider the following:

g = g,

= a(a−1g),
= aal,

where al = a−1g must belong to G using the closure property. From the definition
of H, we see that aal is an element in H. Thus, for element g ∈ G, there exists a
corresponding element aal ∈ H. We also need to show that they map to unique
elements, which we do by contradiction. Consider two elements in H, aam and
aan, such that aam = aan. Left multiplying by a−1, we see that am = an, which is not
allowed since the elements of G are unique. Thus, left (or right) multiplying the
elements of a group with another element amounts to a reordering of the elements.

Group theory is the study of theoretical mathematical objects and their rela-
tionships with each other. To map them to something more concrete, we turn
to representation theory. More specifically, in this work, we restrict ourselves to
unitary representation theory, and we use representation theory to mean unitary
representation theory. This allows us to study the physical action of groups on
physical systems, like qubits.

Representation theory is the study of mapping elements of a group to unitary
operations on a Hilbert space such that the rules of the group operation ∗ are
obeyed. More concretely, a representation φ of a group G on a vector space V is
defined as a function φ : G → U(V) that preserves the action of the group such
that

φ(g) φ(h) = φ(g ∗ h)
φ(e) = I, (2.123)

for all group elements g, h ∈ G. Here U(V) is the set of unitary operators acting on
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the vector space V . Let us look at a simple example that helps flesh out some of
these ideas.

Consider the simplest non-trivial group called Z2. This group consists of two
elements {e, f }, such that ee = e, e f = f , f e = f , and f 2 = e. We now connect this
abstract group to a physical system of interest, the qubit. Consider the following
unitary representation φ:

φ(e) = I, φ( f ) = X. (2.124)

We know that

φ(e)φ( f ) = IX,
= X,
= φ( f )
= φ(e ∗ f ),

φ( f )φ( f ) = X × X,
= I,
= φ(e)
= φ( f ∗ f ).

The other two relations, φ(e)φ(e) and φ( f )φ(e), can be shown similarly. Thus, this
function φ is a valid unitary representation. Another example is the two-qubit
unitary representation ω : Z2 → U(H2) of the group Z2 with the following map-
ping:

φ(e) = I, φ( f ) = CNOT . (2.125)

The same properties can be shown for this representation. As discussed earlier,
representations give us a way to connect abstract mathematical groups to real
quantum systems.

2.4 Complexity theory

Computation is the process of performing calculations or solving problems with
a specific set of steps or instructions. Computation is ubiquitous in our world,
ranging from small calculators to large-scale supercomputers. The notion of what
is computable depends on a specific ‘model’ of computation. Historically, there
have been many models, but Turing machines, described by Alan Turing, have
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become the foundational model. While the exact description of a Turing machine
is not relevant here, the main takeaway of the model is the Church-Turing thesis,
which states that “any real-world computation can be translated into an equiva-
lent computation on a Turing machine." Turing machines capture the essence of
computation and became the benchmark using which problems are studied and
classified.

Complexity theory builds on this framework of Turing machines to study the
efficiency of a particular computation. The idea is to quantify how long (time
complexity) and how much memory (space complexity) are required to solve a
problem. Before we go ahead, we assume the reader to be familiar with Big-O no-
tation. A short summary can be found in Appendix A. Complexity theory uses the
asymptotic growth of the time and space requirements of an algorithm to classify
them into classes of problems. All problems within a class can be thought of as
having similar complexity or difficulty. Let us look at some interesting examples.

The class of problems P (polynomial-time) is the set of problems for which
there exists a polynomial-time algorithm that solves the problem. More concretely,
this means that there exists an algorithm that solves the problem whose runtime
is polynomial in the input size. The polynomial involved can be of any degree.
Any example of a P problem is sorting a list. Merge sort has a time complexity
of n log n, where n is the size of the list.This means that it has polynomial time
complexity, since n log n = O(n2). Problems in P are considered classically efficient
problems.

Another important class of problems called NP (nondeterministic polynomial-
time problems) is the set of problems for which there exists a polynomial-time ver-
ification strategy. Intuitively, the class consists of problems that can be efficiently
solved when assisted by a powerful ‘prover’ who provides a ‘proof’ (solution)
that can be efficiently verified. The “subset sum problem” is an example of an
NP problem – Given a set of numbers, is there a subset that adds up to a specific
target value? It is easy to check a possible solution; just add up the entries in that
solution and compare. However, finding a solution can be very difficult for large
sets.

However, the landscape dramatically changed with the conception of the idea
of quantum computers. Turing machines are classical devices and are ‘limited’
by the laws of classical physics. The model of computation was thus modified
to include models that incorporate quantum mechanics. While several models
were proposed and shown to be equivalent, the prevalent model is the quantum
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circuit model. An excellent review of quantum complexity theory can be found
here [BV97,Wat09a]. We now go over a brief overview of the important features of
quantum computational complexity theory and the different classes of problems.

Before we go into the important classes, we define two concepts that will be
essential – ‘hardness’ and ‘completeness’. A problem is said to be hard for a com-
putational class if it is at least as hard to solve as the hardest problem of the class.
A problem is complete for a class if it is hard for the class, and additionally, be-
longs to the class. A property of complete problems is that every other problem
in the class can be efficiently mapped to a complete problem. In other words,
the ability to solve a complete problem for a class can be efficiently repurposed
to solve any other problem in that class. Therefore, a complete problem indeed
completely characterizes the difficulty of the class.

Two different methods exist to show that a problem is hard for a given class.
First, we pick another problem that is known to be complete for the class and
efficiently map that problem to the problem of interest. Another method is to take
the definition of the class itself and show that an arbitrary problem in the class can
be efficiently mapped to the problem of interest.

Another important concept needed to fully specify the complexity of a prob-
lem is a polynomial-time generated family of circuits. Given a classical descrip-
tion/encoding of a quantum circuit, x ∈ S , where S ⊆ {0, 1}∗ is a set of binary
strings, the set of quantum circuits {Qx | x ∈ S } is said to be polynomial-time gen-
erated if there exists a Turing machine that takes in as input the string x and out-
puts an encoding of the quantum circuit Qx in polynomial time. This particular
definition allows us to limit the power of the computational model to circuits that
are “polynomially complex" by limiting the process by which such circuits are
created.

Lastly, we define promise problems. A promise problem can be thought of
as a yes-no rewriting of a general decision problem. More concretely, a promise
problem is a pair L = (Lyes, Lno), where Lyes, Lno are subsets of all possible inputs
such that Lyes ∩ Lno = ∅. The inputs of the two subsets are called yes-instances
and no-instances, respectively. For the example of the ‘subset sum problem’, yes
instances are subsets that add up to the specific target value. An algorithm is said
to “decide" a promise problem if, given an input from Lyes ∪ Lno, it can determine
to which subset the input belongs.
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2.4.1 BQP

The class of bounded-error quantum polynomial time (BQP) promise problems is
often referred to as the class of problems efficiently solvable on a quantum com-
puter [NC10, Chapter 4]. The classical analog of BQP is the class of bounded-error
probabilistic polynomial time (BPP) problems, which is the class of problems ef-
ficiently solvable on a classical computer with access to random bits. A promise
problem is a member of BQP if there exists an efficient quantum algorithm solving
it in polynomial time with a success probability of at least 2/3.

The formal definition of BQP is as follows. Let L = (Lyes, Lno) be a promise
problem, α, β : N → [0, 1] arbitrary functions, and p a polynomial function. Then
L ∈ BQPp(α, β) if there exists a polynomial-time generated family Q = {Qn : n ∈ N}
of unitary circuits, where each circuit Qn

• takes n+ p(n) input qubits – the first n qubits are used for the input x ∈ L, and
the next p(n) input qubits are extra ancilla qubits that the verifier is allowed,

• produces as output one decision qubit labeled by D and n + p(n) − 1 garbage
qubits labeled by G.

In what follows, we write each Qn as QS A→DG, thereby suppressing the depen-
dence on the input length n = |x| and explicitly indicating the systems involved at
the input and output of the unitary. In addition, the circuit Qn has the following
properties:

1. Completeness: For all x ∈ Lyes,

Pr[Q accepts x]

B ‖(〈1|D ⊗ IG)QS A→DG(|x〉S ⊗ |0〉A)‖22
≥ α(|x|). (2.126)

2. Soundness: For all x ∈ Lno,

Pr[Q accepts x] ≤ β(|x|), (2.127)

where acceptance is defined as obtaining the outcome one upon measuring
the decision qubit register D of the state QS A→DG(|x〉S ⊗ |0〉A). Then BQP =⋃

p BQPp(2/3, 1/3), where the union is over every polynomial-bounded function
p.
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Figure 2.9: A general QIP(3) algorithm. The unitaries P1
x and P2

x are implemented
by an all-powerful prover, and the probability of measuring the decision qubit to
be in the state |1〉 is the acceptance probability of the algorithm.

2.4.2 QIP

Quantum interactive proof systems (QIP) denote a powerful complexity class in
quantum computational complexity theory. Indeed, a landmark result of the field
is QIP = PSPACE [JJUW10], the set of classical problems that use polynomial
space, but unbounded time. The interactive proof system model involves mes-
sages between a computationally-bounded verifier and a prover with limitless
computational power. These interactions may consist of some number of rounds
m, in which case these models can be classified by the number of exchanges as
QIP(m). After all the messages have been exchanged, the verifier makes a de-
cision to either accept or reject based on these interactions. Thus, the class QIP
refers to all such promise problems that can be framed in this manner.

More formally, the definition both of QIP(m) and QIP are given in
[KW00, Wat03] to be as follows: Let m ∈ N, and let α, β : N → [0, 1] be func-
tions. Then let QIP(m, α, β) denote the class of promise problems L for which there
exists an m-message verifier V such that

1. for all x ∈ L, ∃ a prover P such that the pair (V, P) accepts with probability at
least α(|x|), and,

2. for all x < L, ∀ provers P, the pair (V, P) accepts with probability at most
β(|x|).

Usually, interactive proof classes are denoted solely by the number of messages
exchanged, QIP(m). An important finding for QIP is that QIP = QIP(3), which
implies that no further computational power is afforded by increasing the number
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of messages exchanged beyond three [KW00]. A general QIP(3) algorithm can be
seen in Figure 2.9.

The problem of close images was the first QIP-Complete problem to be pro-
posed [KW00], and it is stated as follows:

Definition 2.5 [Problem of Close Images]. For constants 0 ≤ β < α ≤ 1, the input
consists of two polynomial-time computable quantum circuits that agree on the number of
output qubits and realize the quantum channelsN1 andN2. Decide which of the following
holds:

Yes: max
ρ1,ρ2

F(N1(ρ1),N2(ρ2)) ≥ α, (2.128)

No: max
ρ1,ρ2

F(N1(ρ1),N2(ρ2)) ≤ β, (2.129)

where the optimization is over all input states ρ1 and ρ2.

2.4.3 QMA

The quantum Merlin–Arthur (QMA) class is equivalent to QIP(1); that is, this
model consists of a single message exchanged between a computationally un-
bounded prover and a computationally limited verifier.

The definition of QMA can be found in [Wat09a], reproduced here for conve-
nience. Let L = (Lyes, Lno) be a promise problem, let p, q be polynomially-bounded
functions, and let α, β : N → [0, 1] be functions. Then L ∈ QMAp,q(α, β) if there
exists a polynomial-time generated family of unitary circuits Q = {Qn : n ∈ N},
where each circuit Qn

• takes n + p(n) + q(n) input qubits – the first n qubits are used for the input
x ∈ L, the next p(n) input qubits are extra ancilla qubits that the verifier is
allowed, and the last q(n) qubits are given by the prover,

• produces as output one decision qubit labeled by D and n + p(n) + q(n) − 1
garbage qubits labeled by G.

As before, we write Qn as QS AP→DG, thereby suppressing the dependence on the
input length n = |x| and explicitly indicating the systems involved at the input
and output of the unitary. In addition, the circuit Qn has the following properties:
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1. Completeness: For all x ∈ Lyes, there exists a q(|x|)-qubit state σP such that

Pr[Q accepts (x, σ)] = 〈1|D TrG[ωDG]|1〉D (2.130)
≥ α(|x|), (2.131)

where
ωDG B Qn(|x〉〈x|S ⊗ |0〉〈0|A ⊗ σP)Q†n. (2.132)

2. Soundness: For all x ∈ Lno and every q(|x|)-qubit state σP, the following in-
equality holds:

Pr[Q accepts (x, σ)] ≤ β(|x|). (2.133)

Then QMA =
⋃

p,q QMAp,q(2/3, 1/3), where the union is over all polynomial-
bounded functions p and q.

2.4.4 QMA(2)

QMA(2) is a generalization of QMA with proofs that consist of two systems
guaranteed to be separable [KMY01, HM10]. We reproduce the definition of
QMA(2) for convenience. Let A = (Ayes, Ano) be a promise problem, let p, q, r be
polynomially-bounded functions, and let a, b : N → [0, 1] be functions. Then
A ∈ QMA(2)p,q(a, b) if there exists a polynomial-time generated family of circuits
Q = {Qn : n ∈ N}, where each circuit Qn takes n + p(n) + q(n) + r(n) input qubits
and produces one decision qubit D and n + p(n) + q(n) + r(n) − 1 garbage qubits G,
with the following properties (again, we employ the notation QS AP1P2→DG in what
follows):

1. Completeness: For all x ∈ Ayes, there exists a q(|x|)-qubit state ρ and an r(|x|)-
qubit state σ such that

Pr[Q accepts (x, ρ, σ)] = 〈1|D TrG[ωDG]|1〉D
≥ a(|x|), (2.134)

where

ωDG B QS AP1P2→DG(|x〉〈x|S ⊗ |0〉〈0|A ⊗ ρP1 ⊗ σP2)(QS AP1P2→DG)†. (2.135)
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2. Soundness: For all x ∈ Ano, and every q(|x|)-qubit state ρ and r(|x|)-qubit state
σ, the following inequality holds:

Pr[Q accepts (x, ρ, σ)] ≤ b(|x|). (2.136)

Then QMA(2) =
⋃

p QMA(2)p,q(2/3, 1/3), where the union is over all polynomi-
ally bounded functions p and q.

2.4.5 QSZK

The complexity class quantum statistical zero-knowledge (QSZK) gives a quan-
tum analog of the classical statistical zero-knowledge class [Wat02b,Wat06], which
can be phrased in terms of an interactive proof system.

We reproduce the definition of QSZK here for convenience. Let V be a verifier
and P a prover that acts on some input x. Define the mixed state of the verifier and
message qubits after j messages to be ρV,M(x, j). Then the pair (V, P) is a quantum
statistical zero-knowledge proof system for a promise problem L if

1. (V, P) is an interactive proof system for L, and

2. there exists a polynomial-time preparable set {σx, j} j of states such that

x ∈ L⇒ ∀ j
∥∥∥σx, j − ρV,M(x, j)

∥∥∥
1
≤ δ(|x|), (2.137)

for some δ such that δ(n) < 1/p(n) for sufficiently large n and every polyno-
mial p.

The completeness and soundness requirements of this class come from the under-
lying proof system; for the definition of QSZK, we restrict the completeness and
soundness errors to be at most 1/3.

For this class, as with many class definitions, it can be helpful to look at a
QSZK-Complete promise problem. The quantum state distinguishability problem
was originally proposed alongside the class definition in [Wat02b], and so it is a
natural choice. The problem statement is as follows:

Definition 2.6 [Quantum State Distinguishability]. Let L = (Lyes, Lno) be a promise
problem, and let α and β be constants satisfying 0 ≤ β < α ≤ 1. Given two quantum
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Figure 2.10: A general QIP(2) algorithm. The unitary Px is implemented by an
all-powerful prover, and the probability of measuring the decision qubit to be in
the state |1〉 is the acceptance probability of the algorithm.

circuits Q0 and Q1 acting on m qubits each and having k specified output qubits, let ρi

denote the output mixed state obtained by running Qi on an input |0〉⊗m. Decide whether

Yes:
1
2
‖ρ0 − ρ1‖1 ≥ α, (2.138)

No:
1
2
‖ρ0 − ρ1‖1 ≤ β. (2.139)

In [Wat02b], it was shown that (α, β)-Quantum State Distinguishability is
QSZK-Complete for 0 ≤ β < α2 ≤ 1 .

2.4.6 QIP(2)

The complexity class QIP(2) specifically denotes a set of promise problems that
include two messages exchanged between the prover and verifier. The formal
definition can be inferred from Section 2.4.2 by setting the number of messages to
two, i.e., m = 2. A general QIP(2) algorithm can be seen in Figure 2.10.

We now reproduce the canonical QIP(2)-Complete problem [Wat02a,HMW14]
as follows:

Definition 2.7 [Problem of Close Image]. Given is a circuit to realize a unitary extension
UAE′→BE of a channel NA→B, such that

NA→B(ωA) = TrE[UAE′→BE(ωA ⊗ |0〉〈0|E′)(UAE′→BE)†] (2.140)

for every input state ωA, and a circuit to realize a purification of the state ρB. Decide which
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of the following holds:

Yes: max
σA

F(ρB,NA→B(σA)) ≥ α, (2.141)

No: max
σA

F(ρB,NA→B(σA)) ≤ β, (2.142)

where the optimization is over every input state σA.

Note that the Problem of Close Image is different from the Problem of Close
Images (see Definition 2.5). In the former, we bound the fidelity between a channel
and a state, whereas in the latter, we bound the fidelity between two channels.

2.4.7 QIPEB(2)

The complexity class QIPEB(2) was introduced in [PRRW24] and represents a mod-
ification of QIP(2). By inspecting Figure 2.10 and recalling the Stinespring dilation
theorem (see, e.g., [Wil17]), we see that the prover’s action in a QIP(2) protocol is
equivalent to performing a quantum channel that has input system R and output
system R′ (see also [JUW09, Figure 1]). The idea behind QIPEB(2) is that the prover
is constrained to performing an entanglement-breaking channel. Such a channel
has the following form [HSR03]:

ρ→
∑

x

Tr[µxρ]φx, (2.143)

where {µx}x is a rank-one positive operator-valued measure (i.e., each µx is a rank-
one positive semi-definite operator and

∑
x µx = I) and {φx}x is a set of pure states.

The canonical QIPEB(2)-Complete problem is as follows [PRRW24, Theo-
rem 11]:

Definition 2.8. Given circuits to generate a unitary extension of a channel NG→S and a
purification of a state ρS , decide which of the following holds:

Yes: max
{(p(x),ψx)}x,
{ϕx}x,∑

x p(x)ψx
S =ρS

∑
x

p(x)F(ψx
S ,NG→S (ϕx

G)) ≥ α, (2.144)

No: max
{(p(x),ψx)}x,
{ϕx}x,∑

x p(x)ψx
S =ρS

∑
x

p(x)F(ψx
S ,NG→S (ϕx

G)) ≤ β, (2.145)
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where the optimization is over every pure-state decomposition of ρS , as
∑

x p(x)ψx
S = ρS ,

and {ϕx}x is a set of pure states.

2.4.8 QAM

The quantum Arthur–Merlin (QAM) class was introduced in [MW05], and it can
be understood as a variation of QMA in which the verifier and prover are given
access to shared randomness in advance. It can also be understood as a restricted
version of QIP(2) in which the first message of the verifier is restricted to being a
uniformly random classical bitstring. As such, the following containments hold:
QMA ⊆ QAM ⊆ QIP(2).

Let us recall its definition here. Let L = (Lyes, Lno) be a promise problem, let
p, q, r be polynomially-bounded functions, and let α, β : N → [0, 1] be functions.
Then L ∈ QAMp,q,r(α, β) if there exists a polynomial-time generated family of uni-
tary circuits Q =

{
Qn,y : n ∈ N, y ∈ Y

}
, where y is a uniformly random bitstring con-

sisting of r(n) bits, so that log2 |Y| = r(n), and each circuit Qn,y

• takes n + p(n) + q(n) input qubits – the first n qubits are used for the input
x ∈ L, the next p(n) input qubits are extra ancilla qubits that the verifier is
allowed, and the last q(n) qubits are given by the prover,

• produces as output one decision qubit labeled by D and n + p(n) + q(n) − 1
garbage qubits labeled by G.

We write Qn,y as Qy
S AP→DG, thereby suppressing the dependence on the input length

n = |x| and explicitly indicating the systems involved at the input and output of
the unitary. We also use the shorthand Qy ≡ Qy

S AP→DG. In addition, each set {Qn,y}y∈Y

of circuits has the following properties:

1. Completeness: For all x ∈ Lyes, there exists a set {σy
P}y∈Y of q(|x|)-qubit states

such that
1
|Y|

∑
y∈Y

Pr[Qy accepts (x, σy)]

=
1
|Y|

∑
y∈Y

〈1|D TrG[ωy
DG]|1〉D (2.146)

≥ α(|x|), (2.147)
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where
ω

y
DG B Qy(|x〉〈x|S ⊗ |0〉〈0|A ⊗ σ

y
P)(Qy)†. (2.148)

2. Soundness: For all x ∈ Lno, and every set {σy
P}y∈Y of q(|x|)-qubit states, the

following inequality holds:

1
|Y|

∑
y∈Y

Pr[Qy accepts (x, σy)] ≤ β(|x|). (2.149)

The acceptance probability

1
|Y|

∑
y∈Y

Pr[Qy accepts (x, σy)] (2.150)

can be understood as the probability of acceptance conditioned on a fixed value
of y, which is then averaged over the shared uniform randomness (i.e., here we
are applying the law of total probability). Then QAM =

⋃
p,q,r QAMp,q,r(2/3, 1/3),

where the union is over all polynomial-bounded functions p, q, and r.

2.5 Variational algorithms

Variational algorithms are algorithms that use a hybrid quantum-classical ap-
proach to learn some optimal quantum state. As opposed to large quantum cir-
cuits that require a large number of high-quality qubits, variational quantum al-
gorithms (VQAs) require a relatively smaller number of qubits, with fewer con-
straints on their quality. Some part of the workflow is offloaded to a classical
computer, reducing the overall quantum load. Since the results of this thesis rely
heavily on VQAs, we spend some time developing an intuition of the power, lim-
itations, and future directions of VQAs. Before we delve into the quantum part
of VQAs, we first explore the idea of training parameters to find a best fit. To do
this, we use the pedagogical example of line fitting, or linear regression.

Lienar Regression - Linear regression is the process of finding the best fit line for a
given set of data points. Consider we have a set of points as shown in Figure 2.11.
The goal is to find the optimal line that fits these points. Each line is parameterized
by two variables, m and c.

ym,c(x) = mx + c. (2.151)

45



6 4 2 0 2 4 6
x

10

5

0

5

10

15

20
y

Data Points
Line m = 2, c = 1

Figure 2.11: Data points in blue and fitted line in red.

From visual inspection of Figure 2.11, we can see that both the slope m and
intercept c are too low. This was a simple example with 2D data. For larger di-
mensions, we need to find a way to learn the optimal parameters. To this end, we
define a loss function that we minimize. The loss function measures how far the
fitted line, defined by m and c, is from the points. In this example, the loss function
is the sum of perpendicular lengths squared, as seen in Figure 2.12 (normalized
by the number of points). Minimizing the sum of squares of all the dashed green
lines, i.e., minimizing the loss function, gives us a method to find the optimal
parameters m and c.

How does the minimization procedure work? There are multiple methods to
try and minimize the loss function, but here we discuss the simplest – gradient
descent. In essence, it involves finding the derivative of the loss function with
respect to the parameters and using this information to take a step in the direction
that reduces the loss function the most. Let’s say that the loss function is given by
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Figure 2.12: Dashed green lines represent the pieces of the loss function.

L(m, c). If the blue data points are given by {(xi, yi)}i, then the loss function can be
expanded as

L(m, c) =
1
n

∑
i

(yi − (mxi + c))2. (2.152)

Then, the gradient is given by

∇L =
∂L

∂m
m̂ +

∂L

∂c
ĉ. (2.153)

At m = 2 and c = −1, the gradient turns out to be

∇L(2,−1) ≈ (−20,−14). (2.154)

The gradient specifies the direction in the space such that moving along that
direction will increase the loss function by the maximum amount. Since we seek
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Figure 2.13: An example of a bad-fitting model.

to minimize the loss function, we calculate the new (m, c) as follows:

(mnew, cnew) = (mold, cold) − η∇L(mold, cold), (2.155)

where the parameter η is called the learning rate. This ensures that we only take a
small step and do not overshoot. The fact that the gradient is (−20,−14) confirms
that both m and c need to be increased to better approximate the points.

Before moving on, we consider one variation of the above example. Consider
the case where the set of points is shown in Figure 2.13. For these points, we can
visually see that any possible choice of m and c will be a bad fit for the data. In
classical literature, this phenomenon is called underfitting.

The example of linear regression above illustrates several important ideas that
we will further explore in the quantum setting.
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As discussed, quantum variational algorithms use a hybrid quantum-classical
approach to learn an optimal state. The trial state is parameterized using rotation
angles and is called an ansatz. Different ansatz structures lead to a different set
of possible states. An example ansatz can be found in Figure 2.14. After prepar-
ing the ansatz state, some observable is estimated. These estimates are sent to a
classical computer, and the next set of parameters is chosen.

Figure 2.14: An example ansatz on n qubits. The gates within the dotted lines is
called a layer and is usually repeated multiple times. The gates θi represent the
rotation gate Ry(θi).

A typical loss function for a quantum variational algorithm is of the form

L(~θ) = Tr[OU(~θ)|0〉〈0|U†(~θ)], (2.156)

where O is an observable to be measured, U(~θ) is the ansatz, and |0〉 is the start-
ing state. Research on variational algorithms has led to several algorithms, and
an expansive summary can be found here [CAB+21, BCLK+22] (see also [GRS83]
for a review of the variational principle). We now discuss some key factors in a
successful variational algorithm.

2.5.1 Expressivity

Let us look at a simple example of learning the optimal rotational parameter to
prepare a state. We consider a single qubit starting in the |0〉 state and acted upon
by the parameterized y-rotation gate Ry(θ) (see Figure 2.15).
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Figure 2.15: Variational state preparation example.
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Figure 2.16: Dashed green line all possible states for the circuit in Figure 2.15.

For this small example, we can see all possible states that we can prepare in
Figure 2.16. If we define the cost function as the fidelity of the prepared state and
the |+〉 state, we can express this as

L(θ) = |〈+|Ry(θ)|0〉|2,

=
1
2

[cos(θ/2) + sin(θ/2)]2 ,

=
1
2

[1 + sin(θ)] . (2.157)

Clearly, for θ = π
2 , the cost function is maximized, and from Figure 2.16, we see
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that this corresponds to the |+〉 state. This loss function is easy to optimize, as the
gradient can be calculated easily and it has only one maximum.

On the other hand, if the loss function is the fidelity of the prepared state with
the state |+; y〉 (labelled in purple), we can expand the loss as follows:

L(θ) = |〈+; y|Ry(θ)|0〉|2,

=
1
2
|cos(θ/2) − i sin(θ/2)|2 ,

=
1
2
. (2.158)

The loss function is independent of the parameter θ. From the figure, is it clear
that the |+; y〉 state is equidistant from all the states that can be prepared from the
given construction. The gradient of this loss is zero, and training is impossible.

Independent of the cost function, this ansatz can clearly only create a subset of
all possible one-qubit states. For states not in this subset, the fidelity can never be
maximal, with the extreme case being the |+; y〉 state. A measure of the size of all
states that can be created using an ansatz is called the expressivity of the ansatz.
A highly expressive ansatz is one that can prepare most states in the Hilbert space.

2.5.2 Trainability

Another important property of the combination of an ansatz and the loss function
is called trainability. Even if the ansatz is fully expressive, i.e., all states in the
Hilbert space of relevance can be prepared using a specific set of parameters, it
may be impossible to find this optimal set of parameters. There may be many rea-
sons for loss of trainability, but the common thread among them is the emergence
of barren plateaus.

Consider a cost landscape, i.e., the shape of the cost function as a function
of all the parameters. Training begins at a random point and uses the gradient
information to find a path to the optimal set of parameters. Consider the following
two examples of cost landscapes in Figure 2.17.

If the cost landscape looks like the first type, at each point, the gradient value
can be estimated easily, and the next set of parameters can be chosen. However, if
the cost landscape looks like the second type, it becomes difficult to estimate the
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(a) Trainable landscape. (b) Untrainable landscape.

Figure 2.17: Two different possible cost landscapes: (a) a loss landscape that has
features and appreciable gradient values and (b) a barren landscape with low gra-
dient values.

gradient, and thus, the next set of parameters cannot be chosen. Intuitively, we
call landscapes of the second kind barren plateaus.

In both the statements above, the ‘difficulty’ of estimating the gradients is de-
scribed. A more concrete definition of the ‘difficulty’ is based on the number of
shots needed to estimate the gradient accurately. If the gradient of the cost func-
tion is small, say exponentially small, then to accurately estimate it, an exponential
number of samples are required. Barren plateaus are characterized by exponen-
tially small gradient values, leading to an exponential overhead in training. Thus,
barren plateaus pose a significant roadblock to effective quantum variational al-
gorithms.

It turns out the expressivity and trainability of a quantum variational problem
are closely connected. A highly expressive ansatz, while probably containing the
optimal solution, is more prone to barren plateaus, thus making it untrainable
[HSCC22]. We note that in addition to high expressivity, there has been consider-
able research into other causes, potential solutions, and non-solutions.

The main appealing feature of variational quantum computing was the explo-
ration of an exponential Hilbert space. However, there have been several research
works that suggest that this very feature is at the core of the barren plateau is-
sue. Let us consider a simple derivation as to why this must be true. Consider a
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general form of the loss function

Lθ(ρ,O) = 〈U(θ)ρU†(θ),O〉

= 〈ρ,U†(θ)OU(θ)〉. (2.159)

Thus, the loss function is the Hilbert-Schmidt overlap between two vectors in the
exponential Hilbert space. Thus, on average, this overlap must be exponentially
suppressed.

Thus, solutions to the barren plateau are all based on somehow restricting the
size of the explored space to be only polynomially large. These solutions involve
shallow circuits, local observables, small dynamical Lie algebras, variable struc-
ture ansatzes, etc. A highly recommended comprehensive summary can be found
here [LTW+24].
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Chapter 3

Distinguishability

The ability to distinguish between things is what gives meaning to knowledge.
-— Isaiah Berlin

This chapter is based on collaborative work with Rochisha Agarwal, Dr. Kunal
Sharma, and Dr. Mark M. Wilde [RASW23]. Throughout this section, ‘we’ refers
to all four collaborators.

In quantum information processing, it is essential to quantify the performance
of protocols by using distinguishability measures. It is typically the case that there
is an ideal state to prepare or an ideal channel to simulate, but in practice, we can
only realize approximations, due to experimental error. Two commonly employed
distinguishability measures for states are the trace distance [Hel67,Hel69] and the
fidelity [Uhl76]. The former has an operational interpretation as the distinguish-
ing advantage in the optimal success probability when trying to distinguish two
states that are chosen uniformly at random. The latter has an operational meaning
as the maximum probability that a purification of one state could pass a test for
being a purification of the other (this is known as Uhlmann’s transition probabil-
ity [Uhl76]). These distinguishability measures have generalizations to quantum
channels, in the form of the diamond distance [Kit97] and the fidelity of channels
[GLN05]. Each of these measures are generalized by the generalized divergence
of states [PV10], and channels [LKDW18]. The operational interpretations of these
latter distinguishability measures are similar to the aforementioned ones, but the
corresponding protocols involve more steps that are used in the distinguishing
process.
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Both the trace distance and the fidelity can be computed by means of semi-
definite programming [Wat13], so that they can be estimated accurately with a
run-time that is polynomial in the dimension of the states. The same is true for
the diamond distance [Wat09c], and the fidelity of channels [YF17, KW21]. While
this method of estimating these quantities is reasonable for states, and channels,
its computational complexity actually increases exponentially with the number of
qubits involved, due to the well-known fact that Hilbert-space dimension grows
exponentially with the number of qubits.

In this paper, we provide several quantum algorithms for estimating these
distinguishability measures. Some of the algorithms rely on interaction with a
quantum prover, in which case they are not necessarily efficiently computable
even on a quantum computer. In fact, the computational hardness results of
[Wat02c, RW05, Wat09d] lend credence to the belief that estimating these quanti-
ties reliably is not generally possible in polynomial time on a quantum computer.
However, as we show in our paper, by replacing the quantum prover with a pa-
rameterized circuit (see [CAB+21,BCLK+22] for reviews of variational algorithms),
it is possible in some cases to estimate these quantities reliably. Identifying pre-
cise conditions under which a quantum computer can estimate these quantities
efficiently is an interesting open question that we leave for future research. Al-
ready in [WZC+21], it was shown that estimating the fidelity of two quantum
states is possible in quantum polynomial time when one of the states is low rank,
and the same is the case for estimating the trace distance under certain promises
[WGL+22, WZ23]. See also [CPCC20, CSZW22, TV21] for variational algorithms
that estimate fidelity of states and [CSZW22, LLSL21] for variational algorithms
to estimate trace distance. It is open to determine precise conditions under which
estimation is possible for channel distinguishability measures.

We perform noiseless and noisy simulations of several of the algorithms pro-
vided. We find that in the noiseless scenario, all algorithms converge, for the
examples considered, to the true known value of the distinguishability measure
under consideration. In the noisy simulations, the algorithms converge well, and
the parameters obtained exhibit a noise resilience, as put forward in [SKCC20];
i.e., the relevant quantity can be accurately estimated by inputting the parameters
learned from the noisy simulator into the noiseless simulator.

Lastly, we discuss the computational complexity of various distance estima-
tion algorithms. We prove that several fidelity and distance estimation algorithms
are complete for well-known quantum complexity classes (see Section 2.4 for a
brief review of quantum computational complexity theory). In particular, we
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prove that estimating the fidelity between two pure states, a mixed state and a
pure state, and estimating the Hilbert–Schmidt distance of two mixed states are
BQP-complete problems. These aforementioned results follow by demonstrating
that there is an efficient quantum algorithm for these tasks and by showing a
reduction from an arbitrary BQP algorithm to one for these tasks. Thus, if we
believe that there is a separation between the computational power of classical
and quantum computers, then these estimation problems are those for which a
quantum computer has an advantage. Several BQP-complete promise problems
are known, including approximating the Jones polynomial [AJL06], estimating
quadratically signed weight enumerators [KL01], estimating diagonal entries of
powers of sparse matrices [JW07], a problem related to matrix inversion [HHL09],
and deciding whether a pure bipartite state is entangled [GHMW15]. See [Zha12]
for a 2012 review of BQP-complete promise problems.

We then prove that the problem of estimating the fidelity between a channel
with arbitrary input and a pure state is a QMA-complete promise problem. We
show this by constructing an efficient quantum algorithm, augmented by a sin-
gle all-powerful prover, to solve this problem, and by showing a reduction from
an arbitrary QMA problem to one for this task. Lastly, we demonstrate that the
problem of estimating the fidelity between a channel with separable input and a
pure state is QMA(2)-complete. QMA(2) is the class of problems that can be ef-
ficiently solved when augmented by two all-powerful quantum provers who are
guaranteed to be unentangled [KMY01, HM10].

In the rest of the paper, we provide details of the algorithms and results men-
tioned above. In particular, our paper proceeds as follows:

1. The various subsections of Section 3.1 are about estimating the fidelity of
states, channels, and strategies. We begin in Section 3.1.1 by establishing two
quantum algorithms for estimating the fidelity of pure states, one of which
is based on a state overlap test (Algorithm 3.1) and another that employs
Bell state preparation and measurement along with a controlled unitary (Al-
gorithm 3.2).

2. In Section 3.1.2, we generalize Algorithm 3.1 to estimate the fidelity of a pure
state and a mixed state (see Algorithm 3.3).

3. In Section 3.1.3, we establish several quantum algorithms for estimating the
fidelity of two arbitrary states. Algorithm 3.4 generalizes Algorithm 3.2. Al-
gorithm 3.5 generalizes the well-known swap test to the case of arbitrary
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states. Algorithm 3.6 is a variational algorithm that employs Bell measure-
ments, as a generalization of the approach in [GECP13, SCC19] for pure
states. Algorithm 3.7 is another variational algorithm that attempts to sim-
ulate a fidelity-achieving measurement, such as the Fuchs–Caves measure-
ment [FC95], in order to estimate the fidelity.

4. In Section 3.1.4, we generalize Algorithm 3.4 to a quantum algorithm for esti-
mating the fidelity of quantum channels (see Algorithm 3.8). This algorithm
involves interaction with competing quantum provers, and interestingly, its
acceptance probability is directly related to the fidelity of channels, thus giv-
ing the latter an operational meaning. Later, we replace the provers with
parameterized circuits and arrive at a method for estimating the fidelity of
channels.

5. In Section 3.1.5, we briefly discuss alternative methods for estimating the fi-
delity of channels, based on the approaches from Section 3.1.3 for estimating
the fidelity of states.

6. Section 3.1.6 introduces a method for estimating the maximum output fi-
delity of two quantum channels, which has an application to generating a
fixed point of a quantum channel.

7. In Sections 3.1.7 and 3.1.8, we generalize the whole development above to
the case of testing similarity of arbitrary ensembles of states and channels.
We find that the acceptance probability of the corresponding algorithms is
related to the secrecy measure from [KRS09], which can be understood as a
measure of similarity of the states in an ensemble. We then establish gener-
alizations of this measure for an ensemble of channels and remark how this
has applications in private quantum reading [BDW18, DBW20].

8. We then move on in Section 3.2 to estimating trace-distance-based measures,
for states, and channels. We stress that these various algorithms were al-
ready known, and our goal here is to investigate their performance using a
variational approach. In Sections 3.2.1, and 3.2.2, Algorithms 3.13, and 3.14
provide methods for estimating the trace distance of states, and the diamond
distance of channels, respectively.

9. In Section 3.2.3, we provide two different but related algorithms for esti-
mating the minimum trace distance between two quantum channels. The
related approaches employ competing provers to do so.

10. In Section 3.2.4, we generalize the whole development for trace-distance
based algorithms to the case of multiple states, and channels.
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11. In Section 3.3, we discuss the results of numerical simulations of Algo-
rithms 3.4–3.8, Algorithms 3.13–3.14, and Algorithm 3.17. We use both
noiseless and noisy quantum simulators and a variational approach with
parameterized circuits.

12. In Section 3.4, we prove that the problems of evaluating the fidelity between
two pure states, a pure state and a mixed state, and evaluating the Hilbert–
Schmidt distance of two mixed states are BQP-complete (Theorem 3.8, 3.9,
3.10). We then show that the problem of evaluating the fidelity between
a channel with arbitrary input and a pure state is QMA-complete (Theo-
rem 3.11). Finally, we demonstrate that the problem of evaluating the fi-
delity between a channel with separable input and a pure state is QMA(2)-
complete (Theorem 3.12).

We finally conclude in Section 3.5 with a summary and some open questions.

3.1 Estimating fidelity

In this section, we propose algorithms for several different fidelity problems.

3.1.1 Estimating fidelity of pure states

We begin by outlining two simple quantum algorithms for estimating fidelity
when both states are pure. A standard approach for doing so is to use the
swap test [BBD+97, BCWdW01] or Bell measurements [GECP13, SCC19]. The ap-
proaches that we discuss below are different from these approaches. The first al-
gorithm is a special case of that proposed in [Wat02c] (see also [CSZW22]), as well
as a special case of Algorithm 3.3 presented later. The second algorithm involves
a Bell-state preparation and projection, as well as controlled interactions, and it is
a special case of Algorithm 3.4 presented later. We list both of these algorithms
here for completeness and because later algorithms build upon them.

Suppose that the goal is to estimate the fidelity of pure states ψ0 and ψ1, and we
are given access to quantum circuits U0 and U1 that prepare these states when act-
ing on the all-zeros state. We now detail a first quantum algorithm for estimating
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|0〉 U0 U1†

Figure 3.1: This figure depicts Algorithm 3.1 for estimating the fidelity of pure
states generated by quantum circuits U0 and U1. In this, and all following figures,
we use the convention that a bold line represents a classical register.

the fidelity
F(ψ0, ψ1) B

∣∣∣〈ψ1|ψ0〉
∣∣∣2 . (3.1)

Algorithm 3.1 Algorithm schematic for fidelity of pure states.

Input: Quantum circuits U0 and U1 that prepare ψ0 and ψ1.
Output: Estimate of F(ψ0, ψ1).

1: Act with the circuit U0 on the all-zeros state |0〉.
2: Act with U1† and perform a measurement of all qubits in the computational

basis.
3: Accept if and only if the all-zeros outcome is observed.

Algorithm 3.1 is depicted in Figure 3.1. The acceptance probability of Algo-
rithm 3.1 is precisely equal to

∣∣∣〈0|U1†U0|0〉
∣∣∣2, which by definition is equal to the

fidelity in (3.1). In fact, Algorithm 3.1 is a quantum computational implementa-
tion of the well known operational interpretation of the fidelity as the probability
that the state ψ0 passes a test for being the state ψ1.

Our next quantum algorithm for estimating fidelity makes use of a Bell-state
preparation and projection. Its acceptance probability is equal to

1
2

(
1 +
√

F(ψ0, ψ1)
)

(3.2)
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and thus gives a way to estimate the fidelity through repetition. It is a variational
algorithm that optimizes over a phase φ and makes use of the fact that

max
φ∈[0,2π]

Re[eiφ〈ψ0|ψ1〉] = |〈ψ0|ψ1〉|. (3.3)

This can be seen from the fact that the optimal phase φ picked is such that

eiφ =
〈ψ1|ψ0〉

|〈ψ1|ψ0〉|
. (3.4)

Let S denote the quantum system in which the states ψ0 and ψ1 are prepared.

Algorithm 3.2 Algorithm schematic for fidelity of pure states.

Input: Quantum circuits U0 and U1 that prepare ψ0 and ψ1.
Output: Estimate of F(ψ0, ψ1).

1: Prepare a Bell state

|Φ〉T ′T B
1
√

2
(|00〉T ′T + |11〉T ′T ) (3.5)

on registers T ′ and T and prepare system S in the all-zeros state |0〉S .
2: Using the circuits U0

S and U1
S , perform the following controlled unitary:∑

i∈{0,1}

|i〉〈i|T ⊗ U i
S . (3.6)

3: Act with the following unitary on system T ′:[
1 0
0 eiφ

]
. (3.7)

4: Perform a Bell measurement

{ΦT ′T , IT ′T − ΦT ′T } (3.8)

on systems T ′ and T . Accept if and only if the outcome ΦT ′T occurs.

Figure 3.2 depicts Algorithm 3.2. After Step 3 of Algorithm 3.2, the overall
state is as follows:

1
√

2

∑
j∈{0,1}

| j j〉T ′T ei jφ|ψ j〉S , (3.9)
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|0〉

|0〉

H

Ui|0〉

HU(ϕ)

Figure 3.2: This figure depicts Algorithm 3.2 for estimating the fidelity of pure
states generated by quantum circuits U0 and U1. The third gate with U i in the box
is defined in (3.6).

and the acceptance probability is equal to∥∥∥∥∥∥∥∥〈Φ|T ′T
 1
√

2

∑
j∈{0,1}

| j j〉T ′T ei jφ|ψ j〉S


∥∥∥∥∥∥∥∥

2

2

=
1
4

∥∥∥∥∥∥∥∥
∑

j,k∈{0,1}

〈kk| j j〉T ′T ei jφ|ψ j〉S

∥∥∥∥∥∥∥∥
2

2

(3.10)

=
1
4

∥∥∥∥∥∥∥∥
∑

j∈{0,1}

ei jφ|ψ j〉S

∥∥∥∥∥∥∥∥
2

2

(3.11)

=
1
4

(
2 + 2 Re[eiφ〈ψ0|ψ1〉]

)
. (3.12)

By choosing the optimal phase φ in (3.3), we find that the acceptance probability
is equal to the expression in (3.2). Note that, through repetition, we can execute
Algorithm 3.2 in a variational way to learn the optimal value of φ.

Later on, in Section 3.4, we prove that a promise version of the problem of esti-
mating the fidelity between two pure states is a BQP-complete promise problem.
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|0〉
U0

U1†
|0〉

R

S

Figure 3.3: This figure depicts Algorithm 3.3 for estimating the fidelity of a mixed
state generated by a quantum circuit U0 and a pure state generated by U1.

3.1.2 Estimating fidelity when one state is pure and the other is
mixed

In this section, we outline a simple quantum algorithm that estimates the fidelity
between a mixed state ρS and a pure state ψS . It is a straightforward generalization
of Algorithm 3.1.

Let Uρ
RS be a quantum circuit that generates a purification ϕRS of ρS when acting

on the all-zeros state of systems RS , and let Uψ
S be a circuit that generates ψS when

acting on the all-zeros state.

Algorithm 3.3 Algorithm schematic for fidelity of a pure and a mixed state.

Input: Quantum circuits Uρ and Uψ that prepare a purification of ρ and ψ, re-
spectively.

Output: Estimate of F(ψ0, ψ1).

1: Act on the all-zeros state |0〉RS with the circuit Uρ
RS .

2: Act with Uψ†
S on system S and perform a measurement of all qubits of system

S in the computational basis.
3: Accept if and only if the all-zeros outcome is observed.
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Figure 3.3 depicts Algorithm 3.3. The acceptance probability of Algorithm 3.3
is equal to the fidelity F(ψ, ρ) = 〈ψ|ρ|ψ〉, which follows because∥∥∥〈0|S Uψ†

S Uρ
RS |0〉RS

∥∥∥2

2
= Tr[(IR ⊗ |ψ〉〈ψ|S ) |ϕ〉〈ϕ|RS ] (3.13)

= Tr[|ψ〉〈ψ|SρS ] (3.14)
= 〈ψ|ρ|ψ〉. (3.15)

We note here that it is not strictly necessary to have access to the reference
system R of |ϕ〉RS in order to execute Algorithm 3.3. It is only necessary to have
some method of generating the reduced state ρS .

Later on, in Section 3.4, we prove that a promise version of the problem of
estimating the fidelity of a pure state and a mixed state is a BQP-complete promise
problem.

3.1.3 Estimating fidelity of arbitrary states

In this section, we outline several quantum algorithms for estimating the fidelity
of arbitrary states on a quantum computer, some of which involve an interac-
tion with a quantum prover (more precisely, the algorithms involving interaction
with a prover are QSZK algorithms, where QSZK stands for “quantum statistical
zero knowledge” [Wat02c, Wat09d]). The algorithms are different from the algo-
rithm proposed in [Wat02c] (as also considered in [CSZW22]), which is based on
Uhlmann’s formula for fidelity [Uhl76].

Suppose that the goal is to estimate the fidelity of states ρ0
S and ρ1

S , defined as
[Uhl76]

F(ρ0
S , ρ

1
S ) B

∥∥∥∥∥√
ρ0

S

√
ρ1

S

∥∥∥∥∥2

1
, (3.16)

where the trace norm of an operator A is defined as ‖A‖1 B Tr[
√

A†A]. Suppose
also that we are given access to quantum circuits U0

RS and U1
RS that prepare purifi-

cations ψ0
RS and ψ1

RS of ρ0
S and ρ1

S , respectively, when acting on the all-zeros state
|0〉RS . Let us recall Uhlmann’s formula for fidelity [Uhl76]:

F(ρ0
S , ρ

1
S ) = max

|ψ0〉RS ,|ψ1〉RS

∣∣∣〈ψ1|ψ0〉RS

∣∣∣2 , (3.17)

where the optimization is over all purifications ψ0
RS and ψ1

RS of ρ0
S and ρ1

S , respec-
tively. We note here that the fidelity can be computed by means of a semi-definite
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program [Wat13]. Also, the promise version of this problem, involving descrip-
tions of quantum circuits as input, is a QSZK-complete promise problem [Wat02c],
where QSZK stands for quantum statistical zero knowledge (see [Wat02c,Wat09d]
for details of this complexity class). Thus, it is unlikely that anyone will find a
general-purpose efficient quantum algorithm for estimating fidelity (i.e., one that
does not involve interaction with an all-powerful prover).

We note that the algorithms in this subsection need the purification of the state
of interest to be provided. In scenarios where the purification of a state is not avail-
able, there exist variational algorithms to learn the purification [EBS+23,CSZW22].

Controlled unitary and Bell state overlap

We now detail a QSZK algorithm for estimating the following quantity:

1
2

(
1 +
√

F(ρ0
S , ρ

1
S )

)
. (3.18)

It is a QSZK algorithm because, in the case that the fidelity
√

F(ρ0
S , ρ

1
S ) ≈ 1, the

verifier does not learn anything by interacting with the prover (i.e., the verifier
only learns that the algorithm accepts with high probability). This algorithm is
somewhat similar to the quantum algorithm proposed in [CHM+16], which was
used for estimating a quantity known as fidelity of recovery [SW15]. It is also
similar to the algorithm described in Figure 3 of [KW00]. It can be understood as
a generalization of Algorithm 3.2 from pure states to arbitrary states.

Figure 3.4 depicts Algorithm 3.4.

Theorem 3.1. The acceptance probability of Algorithm 3.4 is equal to

1
2

(
1 +
√

F(ρ0
S , ρ

1
S )

)
. (3.22)

Proof. The proof can be found in Appendix B.1.

Generalized swap test

We now detail another quantum algorithm for estimating the fidelity of ar-
bitrary states, which is a generalization of the well known swap test from
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Algorithm 3.4 Algorithm schematic to for fidelity of two mixed states.

Input: Quantum circuits U0 and U1 that prepare purification of ρ0 and ρ1, re-
spectively.

Output: Estimate of F(ρ0, ρ1).

1: The verifier prepares a Bell state

|Φ〉T ′T B
1
√

2
(|00〉T ′T + |11〉T ′T ) (3.19)

on registers T ′ and T and prepares systems RS in the all-zeros state |0〉RS .
2: Using the circuits U0

RS and U1
RS , the verifier performs the following controlled

unitary: ∑
i∈{0,1}

|i〉〈i|T ⊗ U i
RS . (3.20)

3: The verifier transmits systems T ′ and R to the prover.
4: The prover prepares a system F in the |0〉F state and acts on systems T ′, R, and

F with a unitary PT ′RF→T ′′F′ to produce the output systems T ′′ and F′, where
T ′′ is a qubit system.

5: The prover sends system T ′′ to the verifier, who then performs a Bell measure-
ment

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.21)

on systems T ′′ and T . The verifier accepts if and only if the outcome ΦT ′′T

occurs.

[BBD+97, BCWdW01]. We note that this algorithm was used in [KW00, Figure 3]
as part of their proof that QIP = QIP(3). A key difference between Algorithm 3.5
and [KW00, Figure 3] is that Algorithm 3.5 accepts if and only if both qubits at the
end are measured to be in the all-zeros state, whereas it is written in [KW00, Fig-
ure 3] that their algorithm accepts if and only if the first qubit is measured to be
in the zero state.

Figure 3.5 depicts Algorithm 3.5.

Theorem 3.2. The acceptance probability of Algorithm 3.5 is equal to

1
2

(
1 + F(ρ0

S , ρ
1
S )

)
. (3.25)

Proof. The proof can be found in Appendix B.2.
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|0〉

|0〉

H

Ui
|0〉

H

R

S|0〉

P
|0〉

T

T’

F
F’

T’’

Figure 3.4: This figure depicts Algorithm 3.4 for estimating the fidelity of mixed
states generated by quantum circuits U0

RS and U1
RS .

|0〉

|0〉

H

U1
|0〉

H

R1

S1|0〉

|0〉

T

T’

F

F’

T’’

U2
|0〉 R2

S2|0〉

P

R1

S1

R2

S2

Figure 3.5: This figure depicts Algorithm 3.5 for estimating the fidelity of mixed
states generated by quantum circuits U0

RS and U1
RS . Algorithm 3.5 represents a gen-

eralization of the well known swap test for estimating the fidelity of pure states.
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Algorithm 3.5 Algorithm schematic to for fidelity of two mixed states.

Input: Quantum circuits U0 and U1 that prepare purification of ρ0 and ρ1, re-
spectively.

Output: Estimate of F(ρ0, ρ1).

1: The verifier prepares a Bell state

|Φ〉T ′T B
1
√

2
(|00〉T ′T + |11〉T ′T ) (3.23)

on registers T ′ and T and prepares systems R1S 1R2S 2 in the all-zeros state
|0〉R1S 1R2S 2 .

2: Using the circuits U0
RS and U1

RS , the verifier acts on R1S 1R2S 2 to prepare the
two pure states |ψρ0

〉R1S 1 and |ψρ1
〉R2S 2 .

3: The verifier performs a controlled SWAP from qubit T to systems S 1 and S 2,
which applies the identity if the control qubit is |0〉 and swaps S 1 with S 2 if the
control qubit is |1〉.

4: The verifier transmits systems T ′, R1, and R2 to the prover.
5: The prover prepares a system F in the |0〉F state and acts on systems T ′, R1, R2,

and F with a unitary PT ′R1R2F→T ′′F′ to produce the output systems T ′′ and F′,
where T ′′ is a qubit system.

6: The prover sends system T ′′ to the verifier, who then performs a Bell measure-
ment

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.24)

on systems T ′′ and T . The verifier accepts if and only if the outcome ΦT ′′T

occurs.

Variational algorithm with Bell measurements

A third method for estimating the fidelity of arbitrary multi-qubit states is a vari-
ational algorithm that is based on a generalization of the approach outlined in
[GECP13, SCC19]. The approach from [GECP13, SCC19] employs Bell measure-
ments to estimate the expectation of the SWAP observable, which in turn allows
for estimating the fidelity of multi-qubit pure states. See also [Bru04].

We begin in this section by recalling the basic idea from [GECP13, SCC19]
for estimating fidelity of pure states. Let ψS and ϕS be m-qubit pure states of a
system S (so that S = S 1 · · · S m, where each S i is a qubit system, for i ∈ {1, . . . ,m}).
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Let FS S̃ denote the unitary swap operator that swaps systems S and S̃ , and recall
that

Tr[FS S̃ (ψS ⊗ ϕS̃ )] = |〈ψ|ϕ〉|2 = F(ψS , ϕS ). (3.26)

Consider that
FS S̃ = FS 1S̃ 1

⊗ FS 2S̃ 2
⊗ · · · ⊗ FS mS̃ m

. (3.27)

Now observe that
FS iS̃ i

=
∑

x,z∈{0,1}

(−1)x·z Φx,z
S iS̃ i

, (3.28)

where the Bell states are defined as

|Φ0,0〉 B
1
√

2
(|00〉 + |11〉) , (3.29)

|Φ0,1〉 B
1
√

2
(|00〉 − |11〉) , (3.30)

|Φ1,0〉 B
1
√

2
(|01〉 + |10〉) , (3.31)

|Φ1,1〉 B
1
√

2
(|01〉 − |10〉) . (3.32)

We then conclude that

F(ψS , ϕS )

= Tr

 m⊗
i=1

FS iS̃ i

 (ψS ⊗ ϕS̃
) (3.33)

= Tr


 m⊗

i=1

∑
xi,zi∈{0,1}

(−1)xi·zi Φ
xi,zi

S iS̃ i

 (ψS ⊗ ϕS̃
) (3.34)

=
∑

x1,z1,...,
xm,zm∈{0,1}

(−1)
−→x ·−→z Tr

 m⊗
i=1

Φ
xi,zi

S iS̃ i

 (ψS ⊗ ϕS̃
) , (3.35)

where
−→x · −→z ≡

m∑
i=1

xi · zi. (3.36)

Thus, the approach of [GECP13, SCC19] is to estimate F(ψS , ϕS ) by repeatedly
performing Bell measurements on corresponding qubits of ψS and ϕS̃ followed
by classical postprocessing of the outcomes. In particular, for j ∈ {1, . . . , n}, set
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V(θ)
U0

|0〉 R1

S1|0〉

U1
|0〉 R2

S2|0〉

R1

S1

R2

S2

Bell

Bell

Figure 3.6: This figure depicts Algorithm 3.6 for estimating the fidelity of quantum
states generated by quantum circuits U0

RS and U1
RS .

Y j = (−1)
∑m

i=1 xi·zi , where x1, z1, . . . , xm, zm ∈ {0, 1} are the outcomes of the Bell mea-
surements on the jth iteration. Then set Yn B 1

n

∑n
j=1 Y j. By the Hoeffding in-

equality [Hoe63], for accuracy ε ∈ (0, 1) and failure probability δ ∈ (0, 1), we are
guaranteed that

Pr[
∣∣∣Yn − F(ψS , ϕS )

∣∣∣ ≤ ε] ≥ 1 − δ, (3.37)

as long as n ≥ 2
ε2 ln

(
2
δ

)
. Thus, the algorithm is polynomial in the inverse accuracy

and logarithmic in the inverse failure probability.

We now form a simple generalization of this algorithm to estimate the fidelity
of arbitrary states ρ0

S and ρ1
S , in which we perform a variational optimization over

unitaries that act on the reference system of one of the states. For i ∈ {0, 1}, let U i
RS

be an m-qubit unitary that acts on |0〉RS to generate the m-qubit state |ψρi
〉RS ; i.e.,

|ψρ
i
〉RS = U i

RS |0〉RS , (3.38)

such that
ρi

S = TrR[|ψρ
i
〉〈ψρ

i
|RS ]. (3.39)

Figure 3.6 depicts Algorithm 3.6. Since this is a variational algorithm, it is
not guaranteed to converge or have a specified runtime, other than running for
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Algorithm 3.6 Algorithm schematic to for fidelity of two mixed states.

Input: Quantum circuits U0 and U1 that prepare purification of ρ0 and ρ1, re-
spectively, error tolerance ε > 0 and η, δ ∈ (0, 1).

Output: Estimate of F(ρ0, ρ1).

1: Prepare systems R1S 1R2S 2 in the all-zeros state |0〉R1S 1R2S 2 .
2: Act with the circuits U0

RS and U1
RS on systems R1S 1R2S 2 to prepare the two pure

states |ψρ0
〉R1S 1 and |ψρ1

〉R2S 2 .
3: Perform a unitary VR1(θ) on system R1.
4: For j ∈ {1, . . . , n}, where n ≥ 2

η2 ln
(

2
δ

)
, for i ∈ {1, . . . ,m}, perform a Bell measure-

ment on qubit i of system R1 and qubit i of system R2, with outcomes xi
R and zi

R,
and perform a Bell measurement on qubit i of system S 1 and qubit i of system
S 2, with outcomes xi

S and zi
S . Set Y j(θ) = (−1)

∑m
i=1 xi

R·z
i
R+xi

S ·z
i
S .

5: Set

Yn(θ) B
1
n

n∑
j=1

Y j(θ), (3.40)

as an estimate of
Fθ ≡

∣∣∣∣〈ψρ1
|RS VR(θ) ⊗ IS |ψ

ρ0
〉RS

∣∣∣∣2 , (3.41)

so that
Pr

[∣∣∣Yn(θ) − Fθ

∣∣∣ ≤ η] ≥ 1 − δ. (3.42)

6: Perform a maximization of the reward function Yn(θ) and update the parame-
ters in θ.

7: Repeat 1-6 until the reward function Yn(θ) converges with tolerance ε, so that∣∣∣∆Yn(θ)
∣∣∣ ≤ ε, or until some maximum number of iterations is reached. (Here

∆Yn(θ) represents the difference in Yn(θ) from the previous and current itera-
tion.)

8: Output the final Yn(θ) as an estimate of the fidelity F(ρ0
S , ρ

1
S ).
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a maximum number of iterations. However, it is clearly a generalization of the
algorithm from [GECP13, SCC19], in which we estimate the fidelity∣∣∣∣〈ψρ1

|RS VR(θ) ⊗ IS |ψ
ρ0
〉RS

∣∣∣∣2 = F(ψρ
1

RS ,VR(θ)ψρ
0

RS VR(θ)†) (3.43)

at each iteration of the algorithm. If we could actually optimize over all possi-
ble unitaries acting on the reference system R, then the algorithm would indeed
estimate the fidelity, as a consequence of Uhlmann’s theorem [Uhl76]:

F(ρ0
S , ρ

1
S ) = sup

VR

F(ψρ
1

RS ,VRψ
ρ0

RS V†R). (3.44)

However, by optimizing over only a subset of all unitaries, Algorithm 3.6 esti-
mates a lower bound on the fidelity F(ρ0

S , ρ
1
S ).

Variational algorithm for Fuchs–Caves measurement

Algorithm 3.4 from Section 3.1.3 is based on Uhlmann’s formula for fidelity in
(3.17), and the same is true for Algorithm 3.5 from Section 3.1.3 and Algorithm 3.6
from Section 3.1.3. An alternate optimization formula for the fidelity of states ρ0

S
and ρ1

S is as follows [FC95]:

F(ρ0
S , ρ

1
S ) =

min
{Λx

S }x

∑
x

√
Tr[Λx

Sρ
0
S ] Tr[Λx

Sρ
1
S ]

2

, (3.45)

where the minimization is over every positive operator-valued measure
{
Λx

S

}
x

(i.e.,
the operators satisfy Λx

S ≥ 0 for all x and
∑

x Λx
S = IS ). A measurement achiev-

ing the optimal value of the fidelity is known as the Fuchs–Caves measurement
[FC95] and has the form {|ϕx〉〈ϕx|}x, where |ϕx〉 is an eigenvector, with eigenvalue λx,
of the following operator geometric mean of ρ0 and (ρ1)−1 (also called “quantum
likelihood ratio” operator in [Fuc96]):

M B
(
ρ1

)−1/2
√(
ρ1)1/2 ρ0 (

ρ1)1/2
(
ρ1

)−1/2
, (3.46)

so that
M =

∑
x

λx|ϕx〉〈ϕx|. (3.47)
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That is, it is known from [FC95, Fuc96] that

F(ρ0
S , ρ

1
S ) =

∑
x

√
Tr[|ϕx〉〈ϕx|ρ

0
S ] Tr[|ϕx〉〈ϕx|ρ

1
S ]

2

. (3.48)

Thus, we can build a variational algorithm around this formulation of fidelity,
with the idea being to optimize over parameterized measurements in an attempt
to optimize the fidelity, while at the same time learn the Fuchs–Caves measure-
ment (or a different fidelity-achieving measurement). In contrast to the other vari-
ational algorithms presented in previous sections, this alternate approach leads to
an upper bound on the fidelity.

Before detailing the algorithm, recall the Naimark extension theorem [Nai40]
(see also [Wil17, Wat18, KW20]), which states that a general POVM {Λx

S }x with m
outcomes, acting on a quantum state ρ of a d-dimensional system S , can be re-
alized as a unitary interaction US P of the system S with an m-dimensional probe
system P, followed by a projective measurement {|x〉〈x|P}x acting on the probe sys-
tem. That is,

Tr[Λx
SρS ] = Tr[(IS ⊗ |x〉〈x|P)US P(ρS ⊗ |0〉〈0|P)U†S P]. (3.49)

It suffices to choose US P so that

US P|ψ〉S |0〉P =
∑

x

√
Λx

S |ψ〉S |x〉P. (3.50)

Thus, we can express the optimization problem in (3.45) as follows:

√
F(ρ0

S , ρ
1
S ) = min

US P

∑
x

√
Tr[(IS ⊗ |x〉〈x|P)US P(ρ0

S ⊗ |0〉〈0|P)U†S P]×
Tr[(IS ⊗ |x〉〈x|P)US P(ρ1

S ⊗ |0〉〈0|P)U†S P]
. (3.51)

By replacing the optimization in (3.51) over all unitaries with an optimization over
parameterized ones, we arrive at a variational algorithm for estimating fidelity in
Algorithm 3.7.

Figure 3.7 depicts Algorithm 3.7. As before, since this is a variational algo-
rithm, it is not guaranteed to converge or have a specified runtime, other than
running for a maximum number of iterations. One advantage of this algorithm
is that it does not require purifications of the states ρ0

S and ρ1
S . All it requires is a

circuit or method to prepare these states, and then it performs measurements on
these states, in an attempt to learn an optimal measurement with respect to the
cost function F( p̃θ, q̃θ).
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Algorithm 3.7 Algorithm schematic to for fidelity of two mixed states.

Input: Quantum states ρ0 and ρ1, n ∈ N and the error tolerance ε > 0.
Output: Estimate of F(ρ0, ρ1).

1: For j ∈ {1, . . . , n}, prepare system S 1 in the state ρ0
S 1

and system S 2 in the state
ρ1

S 2
, and prepare systems P1 and P2 in the all-zeros state |0〉P1 ⊗ |0〉P2 .

2: Act with the circuit US 1P1(θ) on systems S 1P1 and act with the same circuit
US 2P2(θ) on systems S 2P2.

3: Measure system P1 in the computational basis and record the outcome as y j,
and measure system P2 in the computational basis and record the outcome as
z j.

4: Using the measurement data
{
y j

}n

j=1
and

{
z j

}n

j=1
, calculate the empirical distri-

butions p̃θ(x) and q̃θ(x), where p̃θ(x) is the empirical distribution resulting from

pθ(x) B Tr[(IS ⊗ |x〉〈x|P)US P(θ)(ρ0
S ⊗ |0〉〈0|P)U†S P(θ)], (3.52)

and q̃θ(x) is the empirical distribution resulting from

qθ(x) B Tr[(IS ⊗ |x〉〈x|P)US P(θ)(ρ1
S ⊗ |0〉〈0|P)U†S P(θ)]. (3.53)

5: Output

F( p̃θ, q̃θ) B

∑
x

√
p̃θ(x)q̃θ(x)

2

(3.54)

as an estimate of F(pθ, qθ).
6: Perform a minimization of the cost function F(p̃θ, q̃θ) and update the parame-

ters in θ.
7: Repeat 1-6 until the cost function F(p̃θ, q̃θ) converges with tolerance ε, so that
|∆F(p̃θ, q̃θ)| ≤ ε, or until some maximum number of iterations is reached. (Here
∆F(p̃θ, q̃θ) represents the difference in F( p̃θ, q̃θ) from the previous and current
iteration.)

8: Output the final value of F(p̃θ, q̃θ) as an estimate of the fidelity F(ρ0
S , ρ

1
S ).
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ρ0

|0〉 P1

S1

|0〉 P2

S2ρ1

U(θ)

U(θ)

Figure 3.7: This figure depicts Algorithm 3.7 for estimating the fidelity of quan-
tum states ρ0

S and ρ1
S . The boxes enclosing ρ0 and ρ1 indicate that these are some

mechanisms by which these states are prepared.

In Algorithm 3.7, we did not specify how large n should be in order to get a
desired accuracy of the estimator in (3.54) for the classical fidelity F(pθ, qθ). This
estimator is called a “plug-in estimator” in the literature on this topic, and it is
a biased estimator, which however converges to F(pθ, qθ) in the asymptotic limit
n → ∞. As a consequence of the estimator in (3.54) being biased, the Hoeffding
inequality does not readily apply in this case. As far as we can tell, it is an open
question to determine the rate of convergence of this estimator to F(pθ, qθ). Related
work on this topic has been considered in [JVHW15, AOST17].

3.1.4 Estimating fidelity of channels

In this section, we outline a method for estimating the fidelity of channels on a
quantum computer, by means of an interaction with competing quantum provers
[GW05, Gut05, GW07, Gut09, GW13]. The goal of one prover is to maximize the
acceptance probability, while the goal of the other prover is to minimize the ac-
ceptance probability. We refer to the first prover as the max-prover and the second
as the min-prover. The specific setting that we deal with is called a double quan-
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tum interactive proof (DQIP) [GW13], due to the fact that the min-prover goes
first and then the max-prover goes last. The class of promise problems that can
be solved in this model is equivalent to PSPACE [GW13], which is the class of
problems that can be decided on a classical computer with polynomial memory.

Let us recall that the fidelity of channels N0
A→B and N1

A→B is defined as follows
[GLN05]:

F(N0
A→B,N

1
A→B) B inf

ρRA
F(N0

A→B(ρRA),N1
A→B(ρRA)), (3.55)

where the infimum is over every state ρRA, with the reference system R arbitrar-
ily large. It is known that the infimum is achieved by a pure state ψRA with the
reference system R isomorphic to the channel input system A, so that

F(N0
A→B,N

1
A→B) B min

ψRA
F(N0

A→B(ψRA),N1
A→B(ψRA)). (3.56)

It is also known that it is possible to calculate the fidelity of channels by means of
a semi-definite program [YF17,KW21], which provides a way to verify the output
of our proposed algorithm for sufficiently small examples.

Suppose that the goal is to estimate the fidelity of channels N0
A→B and N1

A→B,
and we are given access to quantum circuits U0

AE′→BE and U1
AE′→BE that realize iso-

metric extensions of the channels N0
A→B and N1

A→B, respectively, in the sense that

N i
A→B(ωA) = TrE[U i

AE′→BE(ωA ⊗ |0〉〈0|E′)(U i
AE′→BE)†], (3.57)

for i ∈ {0, 1}.

We now provide a DQIP algorithm for estimating the following quantity:

1
2

(
1 +
√

F(N0
A→B,N

1
A→B)

)
, (3.58)

which is based in part on Algorithm 3.4 but instead features an optimization over
input states of the min-prover.

Figure 3.8 depicts Algorithm 3.8.

Theorem 3.3. The acceptance probability of Algorithm 3.8 is equal to

1
2

(
1 +
√

F(N0
A→B,N

1
A→B)

)
. (3.62)

Proof. The proof can be found in Appendix B.3.
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Algorithm 3.8 Algorithm schematic to for fidelity of two channels

Input: Quantum circuits U0 and U1 that realize isometric extensions of the chan-
nels N0 and N1, respectively.

Output: Estimate of F(N0,N1).

1: The verifier prepares a Bell state

|Φ〉T ′T B
1
√

2
(|00〉T ′T + |11〉T ′T ) (3.59)

on registers T ′ and T and prepares system E′ in the all-zeros state |0〉E′ .
2: The min-prover transmits the system A of the state |ψ〉RA to the verifier.
3: Using the circuits U0

AE′→BE and U1
AE′→BE, the verifier performs the following

controlled unitary: ∑
i∈{0,1}

|i〉〈i|T ⊗ U i
AE′→BE. (3.60)

4: The verifier transmits systems T ′ and E to the max-prover.
5: The max-prover prepares a system F in the |0〉F state and acts on systems T ′,

E, and F with a unitary PT ′EF→T ′′F′ to produce the output systems T ′′ and F′,
where T ′′ is a qubit system.

6: The max-prover sends system T ′′ to the verifier, who then performs a Bell
measurement

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.61)

on systems T ′′ and T . The verifier accepts if and only if the outcome ΦT ′′T

occurs.

Proposition 3.1. An alternative expression for the acceptance probability of Algo-
rithm 3.8 is

min
ρRA

max
PT ′E→T ′′

Tr[ΦT ′′TPT ′E→T ′′(MA→T ′T BE(ρRA))]

= max
PT ′E→T ′′

min
ρRA

Tr[ΦT ′′TPT ′E→T ′′(MA→T ′T BE(ρRA))], (3.63)

where ρRA is a quantum state, PT ′E→T ′′ is a quantum channel, andMA→T ′T BE is a quantum
channel defined as

MA→T ′T BE(ρRA) B
1
2

∑
i, j∈{0,1}

|ii〉〈 j j|T ′T ⊗ U i(ρRA ⊗ |0〉〈0|E′)(U j)†, (3.64)
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Figure 3.8: This figure depicts Algorithm 3.8 for estimating the fidelity of quantum
channels generated by quantum circuits U0

AE′→BE and U1
AE′→BE. The min-prover

prepares the state |ψ〉RA and the max-prover acts with the unitary PT ′EF→T ′′F′ .

with U i ≡ U i
AE′→BE.

Proof. In Step 2 of Algorithm 3.8, the min-prover could send a mixed quantum
state ρRA instead of sending a pure state. The acceptance probability does not
change under this modification due to the argument around (3.55)–(3.56). Further-
more, due to the Stinespring dilation theorem [Sti55], the actions of tensoring in
|0〉F , performing the unitary PT ′EF→T ′′F′ , and tracing over system F′ are equivalent
to performing a quantum channel PT ′E→T ′′ . Under these observations, consider
that the acceptance probability is then equal to

Tr[ΦT ′′TPT ′E→T ′′(MA→T ′T BE(ρRA))], (3.65)

where the quantum channel MA→T ′T BE is defined in (3.64). Performing the opti-
mizations minρRA maxPT ′E→T ′′ then leads to the first expression in (3.63). Considering
that the set of channels is convex and the set of states is convex, and the objective
function in (3.65) is linear in ρRA for fixed PT ′E→T ′′ and linear in PT ′E→T ′′ for fixed
ρRA, the minimax theorem [Sio58] applies and we can exchange the optimizations.

Proposition 3.1 indicates that if the provers involved can optimize over all pos-
sible states and channels, then indeed the order of optimization can be exchanged.
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However, in a variational algorithm, the optimization is generally dependent
upon the order in which it is conducted because we are not optimizing over all
possible states and channels, but instead optimizing over parameterized circuits.
In this latter case, the state space is no longer convex and the objective function
no longer linear in these parameters. However, we can still attempt the following
“see-saw” strategy in a variational algorithm: first minimize the objective func-
tion with respect to the input state ψRA while keeping the unitary PT ′EF→T ′′F′ fixed.
Then maximize the objective function with respect to the unitary PT ′EF→T ′′F′ while
keeping the state ψRA fixed. Then repeat this process some number of times. We
consider this approach in Section 3.3.5.

3.1.5 Alternate methods of estimating the fidelity of channels

We note briefly here that other methods for estimating fidelity of channels can
be based on Algorithms 3.5, 3.6, and 3.7. It is not clear how to phrase them in
the language of quantum interactive proofs, in such a way that the acceptance
probability is a simple function of the channel fidelity. However, we can employ
variational algorithms in which we repeat the circuit for determining an optimal
input state ψRA for the channel fidelity. Then these variational algorithms employ
an extra minimization step in order to approximate an optimal input state for the
channel fidelity.

3.1.6 Estimating maximum output fidelity of channels

In this section, we show how a simple variation of Algorithm 3.8, in which we
combine the actions of the min-prover and max-prover into a single max-prover,
leads to a QIP algorithm for estimating the following fidelity function of two
quantum channels N0

A→B and N1
A→B:

Fmax(N0,N1) := sup
ρA

F(N0
A→B(ρA),N1

A→B(ρA)), (3.66)

where the optimization is over every input state ρA. This algorithm is based in
part on Algorithm 3.4 but instead features an optimization over input states of the
prover.

Figure 3.9 depicts Algorithm 3.9.
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Algorithm 3.9 Algorithm schematic for max output fidelity of channels

Input: Quantum circuits U0 and U1 that realize isometric extensions of the chan-
nels N0 and N1, respectively.

Output: Estimate of Fmax(N0,N1).

1: The verifier prepares a Bell state

|Φ〉T ′T B
1
√

2
(|00〉T ′T + |11〉T ′T ) (3.67)

on registers T ′ and T and prepares system E′ in the all-zeros state |0〉E′ .
2: The prover transmits the system A of the state |ψ〉RA to the verifier.
3: Using the circuits U0

AE′→BE and U1
AE′→BE, the verifier performs the following

controlled unitary: ∑
i∈{0,1}

|i〉〈i|T ⊗ U i
AE′→BE. (3.68)

4: The verifier transmits systems T ′ and E to the prover.
5: The prover prepares a system F in the |0〉F state and acts on systems T ′, E, and

F with a unitary PT ′EF→T ′′F′ to produce the output systems T ′′ and F′, where
T ′′ is a qubit system.

6: The prover sends system T ′′ to the verifier, who then performs a Bell measure-
ment

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.69)

on systems T ′′ and T . The verifier accepts if and only if the outcome ΦT ′′T

occurs.

Theorem 3.4. The acceptance probability of Algorithm 3.9 is equal to

1
2

(
1 +

√
Fmax(N0

A→B,N
1
A→B)

)
. (3.70)

Proof. The proof can be found in Appendix B.4.

3.1.7 Generalization to multiple states

In this section, we generalize Algorithm 3.4 to multiple states, by devising a quan-
tum algorithm that tests how similar all the states of an ensemble are to each other.
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Figure 3.9: This figure depicts Algorithm 3.9 for generating a state ρA that max-
imizes the fidelity of quantum channels generated by quantum circuits U0

AE′→BE
and U1

AE′→BE.

Suppose that we are given an ensemble
{
p(x), ρx

S

}
x∈X

of states of system S , with
d = |X|, and we would like to know how similar they are to each other. Then
we can perform a test like that given in Algorithm 3.4, but it is a multiple-state
similarity test. The main difference is that the verifier prepares an initial entan-
gled state that encodes the prior probabilities {p(x)}x∈X and the algorithm employs
d-dimensional control systems throughout, instead of qubit control systems. We
suppose that, for all x ∈ X, there is a circuit U x

RS that generates a purification |ψx〉RS

as follows:

|ψx〉RS B U x
RS |0〉RS , (3.71)

ρx
S = TrR[|ψx〉〈ψx|RS ]. (3.72)

Theorem 3.5. The acceptance probability of Algorithm 3.10 is equal to

psim(
{
p(x), ρx

S
}

x∈X) B
1
d

sup
σS

∑
x∈X

√
p(x)
√

F(ρx
S , σS )

2

, (3.78)

where the optimization is over every density operator σS . This acceptance probability is
bounded from above by

1
d

+
2
d

∑
x,y∈X:x<y

√
p(x)p(y)

√
F(ρx

S , ρ
y
S ). (3.79)
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Algorithm 3.10 Algorithm schematic for fidelity of multiple states

Input: Quantum circuits {U x}x∈X that prepare purifications of states {ρx}x∈X, re-
spectively, and probability distribution {p(x)}x∈X.

Output: Estimate of psim
(
{p(x), ρx}x∈X

)
.

1: The verifier prepares a state

|Φp〉T ′T B
∑
x∈X

√
p(x)|xx〉T ′T (3.73)

on registers T ′ and T and prepares systems RS in the all-zeros state |0〉RS .
2: Using the circuits in the set {U x

RS }x∈X, the verifier performs the following con-
trolled unitary: ∑

x∈X

|x〉〈x|T ⊗ U x
RS . (3.74)

3: The verifier transmits systems T ′ and R to the prover.
4: The prover prepares a system F in the |0〉F state and acts on systems T ′, R, and

F with a unitary PT ′RF→T ′′F′ to produce the output systems T ′′ and F′, where
T ′′ is a qudit system.

5: The prover sends system T ′′ to the verifier, who then performs a qudit Bell
measurement

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.75)

on systems T ′′ and T , where

ΦT ′′T = |Φ〉〈Φ|T ′′T , (3.76)

|Φ〉T ′′T B
1
√

d

∑
x∈X

|xx〉T ′′T . (3.77)

The verifier accepts if and only if the outcome ΦT ′′T occurs.
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When d = 2, this upper bound is tight.

Proof. The proof can be found in Appendix B.5.

Corollary 3.1. The fact that the upper bound is achieved in Theorem 3.5 for d = 2 leads
to the following identity for states ρ0

S and ρ1
S and probability p ∈ [0, 1]:[

sup
σS

√
p
√

F(ρ0
S , σS ) +

√
1 − p

√
F(ρ1

S , σS )
]2

= 1 + 2
√

p (1 − p)
√

F(ρ0
S , ρ

1
S ), (3.80)

where the optimization is over every density operator σS .

The acceptance probability in (3.78) is proportional to the secrecy measure dis-
cussed in [KRS09, Eq. (19)], which is the same as the max-conditional entropy of
the following classical–quantum state:∑

x∈X

p(x)|x〉〈x|T ⊗ ρx
S . (3.81)

Indeed, it is a measure of secrecy because if an eavesdropper has access to sys-
tem S and if ρx

S ≈ σ for all x ∈ X and if p(x) ≈ 1/d, then it is difficult for the
eavesdropper to guess the classical message in system T (also, the fidelity is close
to one). According to [SDG+21, Remark 2.7] and the expression in (B.64) of Ap-
pendix B.5, the acceptance probability in (3.78) is also a measure of the symmetric
distinguishability of the classical–quantum state in (3.81), and thus gives this mea-
sure an operational meaning.

The upper bound in (3.79) on the acceptance probability has some conceptual
similarity with known upper bounds on the success probability in state discrim-
ination [Mon08, Qiu08], in the sense that we employ the fidelity of pairs of states
in the upper bound. Finally, we note some similarities between the problem out-
lined here and coherent channel discrimination considered recently in [Wil20].
However, these two problems are ultimately different in their objectives.

3.1.8 Generalization to multiple channels

We now generalize Algorithms 3.8 and 3.10 to the case of testing the similarity
of an ensemble of channels. The resulting algorithm thus has applications in the
context of private quantum reading [BDW18, DBW20], in which one goal of such
a protocol is to encode a classical message into a channel selected randomly from
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an ensemble of channels such that it is indecipherable by an eavesdropper who
has access to the output of the channel.

Let us first consider the case of channels. In more detail, let {p(x),N x
A→B}x∈X be

an ensemble of quantum channels. Set d = |X|. We suppose that, for all x ∈ X, there
is a circuit U x

AE′→BE that generates an isometric extension of the channel N x
A→B, in

the following sense:

N x
A→B(ωA) = TrE[U x

AE′→BE(ωA ⊗ |0〉〈0|E′)(U x
AE′→BE)†]. (3.82)

The following algorithm employs competing provers, similar to how Algo-
rithm 3.8 does.

Algorithm 3.11 Algorithm schematic for fidelity of multiple channels.

Input: Quantum circuits {U x}x∈X that realize isometric extensions of the channels
{N x}x∈X, respectively, and probability distribution {p(x)}x∈X.

Output: Estimate of Estimate of psim
(
{p(x),N x}x∈X

)
.

1: The verifier prepares a state

|Φp〉T ′T B
∑
x∈X

√
p(x)|xx〉T ′T (3.83)

on registers T ′ and T and prepares system E′ in the all-zeros state |0〉RS .
2: The min-prover transmits the system A of the state |ψ〉RA to the verifier.
3: Using the circuits in the set {U x

AE′→BE}x∈X, the verifier performs the following
controlled unitary: ∑

x∈X

|x〉〈x|T ⊗ U x
AE′→BE. (3.84)

4: The verifier transmits systems T ′ and E to the max-prover.
5: The max-prover prepares a system F in the |0〉F state and acts on systems T ′,

R, and F with a unitary PT ′EF→T ′′F′ to produce the output systems T ′′ and F′,
where T ′′ is a qudit system.

6: The max-prover sends system T ′′ to the verifier, who then performs a qudit
Bell measurement

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.85)

on systems T ′′ and T , where ΦT ′′T is defined in (3.76). The verifier accepts if
and only if the outcome ΦT ′′T occurs.
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Theorem 3.6. The acceptance probability of Algorithm 3.11 is equal to

psim({p(x),N x}x∈X) =
1
d

inf
ψRA

sup
σRB

∑
x∈X

√
p(x)
√

F(N x
A→B(ψRA), σRB)

2

. (3.86)

This acceptance probability is bounded from above by

1
d

+
2
d
× inf

ψRA

∑
x,y∈X:

x<y

√
p(x)p(y)

√
F(N x

A→B(ψRA),N y
A→B(ψRA)). (3.87)

When d = 2, this upper bound is tight.

Proof. The proof can be found in Appendix B.6.

Corollary 3.2. The following identity holds in the special case of two channelsN0
A→B and

N1
A→B and probability p ∈ [0, 1]:

[
inf
ψRA

sup
σRB

( √
p
√

F(N0
A→B(ψRA), σRB)

+
√

1 − p
√

F(N1
A→B(ψRA), σRB)

)]2

= 1 + 2
√

p (1 − p) inf
ψRA

√
F(N0

A→B(ψRA),N1
A→B(ψRA)), (3.88)

where the supremum is with respect to every density operator σRB.

We can also generalize Algorithm 3.9 from Section 3.1.6, to estimate the fol-
lowing similarity measure for an ensemble {p(x),N x

A→B}x∈X of channels:

1
d

 sup
ρA,σB

∑
x∈X

√
p(x)
√

F(N x
A→B(ρA), σB)

2

, (3.89)

where the optimization is over all density operators ρA and σB. As is the case with
Algorithm 3.9, there is a single prover who is trying to make all of the channel
outputs look like the same state. Again we suppose that there is a circuit U x

AE′→BE
that generates an isometric extension of the channel N x

A→B, in the sense of (3.82).

Theorem 3.7. The acceptance probability of Algorithm 3.12 is equal to

psim,max({p(x),N x}x∈X) =
1
d

 sup
ρA,σB

∑
x∈X

√
p(x)
√

F(N x
A→B(ρA), σB)

2

. (3.93)
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Algorithm 3.12 Algorithm schematic for max output fidelity of multiple channels.

Input: Quantum circuits {U x}x∈X that realize isometric extensions of the channels
{N x}x∈X, respectively, and probability distribution {p(x)}x∈X.

Output: Estimate of Psim,max ({p(x),N x}x∈X).

1: The verifier prepares a state

|Φp〉T ′T B
∑
x∈X

√
p(x)|xx〉T ′T (3.90)

on registers T ′ and T and prepares system E′ in the all-zeros state |0〉E′ .
2: The prover transmits the system A of the state |ψ〉RA to the verifier.
3: Using the circuits in the set {U x

AE′→BE}x∈X, the verifier performs the following
controlled unitary: ∑

x∈X

|x〉〈x|T ⊗ U x
AE′→BE. (3.91)

4: The verifier transmits systems T ′ and E to the max-prover.
5: The prover prepares a system F in the |0〉F state and acts on systems T ′, R, and

F with a unitary PT ′EF→T ′′F′ to produce the output systems T ′′ and F′, where
T ′′ is a qudit system.

6: The prover sends system T ′′ to the verifier, who then performs a qudit Bell
measurement

{ΦT ′′T , IT ′′T − ΦT ′′T } (3.92)

on systems T ′′ and T , where ΦT ′′T is defined in (3.76). The verifier accepts if
and only if the outcome ΦT ′′T occurs.

This acceptance probability is bounded from above by

1
d

+
2
d
× sup

ρA

∑
x,y∈X:x<y

√
p(x)p(y)

√
F(N x

A→B(ρA),N y
A→B(ρA)). (3.94)

When d = 2, this upper bound is tight.

Proof. For a fixed state ψRA of the prover, the problem is equivalent to that
specified by Algorithm 3.10, for the ensemble {p(x), F(N x

A→B(ρA))}x∈X, where ρA =

TrA[ψRA]. Thus, all of the statements from Theorem 3.5 apply for this fixed state.
We arrive at the statement of the theorem after optimizing over all input states.
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3.2 Estimating trace distance and diamond distance

We now review several well known algorithms for estimating trace distance
[Wat02c] and diamond distance [RW05] by interacting with quantum provers.
Later on, we replace the provers with parameterized circuits to see how well this
approach can perform in estimating these distinguishability measures.

3.2.1 Estimating trace distance

The trace distance between quantum states ρ0
S and ρ1

S is defined as
∥∥∥ρ0

S − ρ
1
S

∥∥∥
1
,

where ‖A‖1 = Tr[
√

A†A]. It is a well known and operationally motivated measure
of distinguishability for quantum states.

We suppose, as is the case in Section 3.1.3, that quantum circuits U0
RS and U1

RS
are available for generating purifications of the states ρ0

S and ρ1
S . That is, for i ∈

{0, 1},
ρi

S = TrR[U i
RS |0〉〈0|RS (U i

RS )†]. (3.95)

However, the purifying systems are not strictly necessary in the operation of the
algorithm given below, which is an advantage over some of the algorithms from
Section 3.1.3.

The following QSZK algorithm allows for estimating the trace distance
[Wat02c], in the sense that its acceptance probability is a simple function of the
trace distance:

Algorithm 3.13 Algorithm schematic for trace distance of states.

Input: Quantum states ρ0 and ρ1.
Output: Estimate of ‖ρ0 − ρ1‖.

1: The verifier picks a classical bit i ∈ {0, 1} uniformly at random, prepares the
state ρi

S , and sends system S to the prover.
2: The prover prepares a system F in the |0〉F state and acts on systems S and F

with a unitary PS F→T F′ to produce the output systems T and F′, where T is a
qubit system.

3: The prover sends system T to the verifier, who then performs a measurement
on system T , with outcome j ∈ {0, 1}. The verifier accepts if and only if i = j.
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This algorithm has been well known for some time [Hel67, Hel69, Hol72,
Wat02c] and its maximum acceptance probability is equal to

max
Λ:0≤Λ≤I

1
2

Tr[Λρ0
S ] +

1
2

Tr[(I − Λ)ρ1
S ] =

1
2

(
1 +

1
2

∥∥∥ρ0
S − ρ

1
S

∥∥∥
1

)
. (3.96)

This follows because the acceptance probability can be written as follows, for a
fixed unitary P ≡ PS F→T F′ of the prover:

1
2

∑
i∈{0,1}

Tr[(|i〉〈i|T ⊗ IF′)P(ρi
S ⊗ |0〉〈0|F)P†]

=
1
2

∑
i∈{0,1}

Tr[〈0|F P†(|i〉〈i|T ⊗ IF′)P|0〉Fρi
S ] (3.97)

=
1
2

∑
i∈{0,1}

Tr[Λi
Sρ

i
S ], (3.98)

where we have defined the measurement operator Λi
S , for i ∈ {0, 1}, as

Λi
S B 〈0|F(PS F→T F′)†(|i〉〈i|T ⊗ IF′)PS F→T F′ |0〉F , (3.99)

and it is clear that
∑

i∈{0,1}Λ
i
S = IS . By the Naimark extension theorem [Nai40] (see

also [KW20]), every measurement can be realized in this way, so that

max
P

1
2

∑
i∈{0,1}

Tr[(|i〉〈i|T ⊗ IF′)P(ρi
S ⊗ |0〉〈0|F)P†] = max

Λ:0≤Λ≤I

1
2

Tr[Λρ0
S ] +

1
2

Tr[(I − Λ)ρ1
S ].

(3.100)

Thus, by replacing the actions of the prover with a parameterized circuit and
repeating the algorithm, we can use a quantum computer to estimate a lower
bound on the trace distance of the states ρ0

S and ρ1
S . An approach similar to this

has been adopted in [CSZW22].

We note here that the following identity holds also [Hel67, Hel69, Hol72] (see
also [KW20, Theorem 3.13]):

min
Λ:0≤Λ≤I

1
2

Tr[Λρ0
S ] +

1
2

Tr[(I − Λ)ρ1
S ] =

1
2

(
1 −

1
2

∥∥∥ρ0
S − ρ

1
S

∥∥∥
1

)
. (3.101)
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3.2.2 Estimating diamond distance

The diamond distance between quantum channels N0
A→B and N1

A→B is defined as
[Kit97] ∥∥∥N0

A→B − N
1
A→B

∥∥∥
�
B sup

ρRA

∥∥∥N0
A→B(ρRA) − N1

A→B(ρRA)
∥∥∥

1
, (3.102)

where the optimization is over every bipartite state ρRA and the system R can be ar-
bitrarily large. By a well known data processing argument, the following equality
holds ∥∥∥N0

A→B − N
1
A→B

∥∥∥
�
B max

ψRA

∥∥∥N0
A→B(ψRA) − N1

A→B(ψRA)
∥∥∥

1
, (3.103)

where the optimization is over every pure bipartite state ψRA and the system R is
isomorphic to the channel input system A. The diamond distance is a well known
and operationally motivated measure of distinguishability for quantum channels
[RW05, GLN05].

We suppose, as is the case in Section 3.1.4, that quantum circuits U0
AE′→BE and

U1
AE′→BE are available for generating isometric extensions of the channelsN0

A→B and
N1

A→B. That is, for i ∈ {0, 1},

N i
A→B(·) = TrE[U i

AE′→BE((·) ⊗ |0〉〈0|E′)(U i
AE′→BE)†]. (3.104)

However, the environment systems are not strictly necessary in the operation of
the algorithm given below, which is an advantage over some of the algorithms
from Section 3.1.4.

The following QIP algorithm allows for estimating the diamond distance
[RW05], in the sense that its acceptance probability is a simple function of the
diamond distance:

This algorithm has been well known for some time [RW05] and its maximum
acceptance probability is equal to

1
2

(
1 +

1
2

∥∥∥N0
A→B − N

1
A→B

∥∥∥
�

)
. (3.105)

Thus, by replacing the actions of the prover with a parameterized circuit and re-
peating the algorithm, we can use a quantum computer to estimate a lower bound
on the diamond distance of the channels N0

A→B and N1
A→B.

88



Algorithm 3.14 Algorithm schematic for diamond distance of channels [RW05].

Input: Quantum circuits U0 and U1 that realize isometric extensions of the chan-
nels N0 and N1, respectively.

Output: Estimate of ‖N0 − N1‖�.

1: The prover prepares a pure state ψRA and sends system A to the verifier.
2: The verifier picks a classical bit i ∈ {0, 1} uniformly at random, applies the

channel N i
A→B, and sends system B to the prover.

3: The prover prepares a system F in the |0〉F state and acts on systems R, B, and
F with a unitary PRBF→T F′ to produce the output systems T and F′, where T is
a qubit system.

4: The prover sends system T to the verifier, who then performs a measurement
on system T , with outcome j ∈ {0, 1}. The verifier accepts if and only if i = j.

3.2.3 Estimating minimum trace distance of channels

In this section, we show how to estimate the following trace distance function of
channels N0

A→B and N1
A→B by means of a short quantum game (SQG) algorithm:

inf
ρA

∥∥∥N0
A→B(ρA) − N1

A→B(ρA)
∥∥∥

1
, (3.106)

where the optimization is over every input state ρA. The algorithm features a min-
prover and a max-prover. Short quantum games were defined and studied in
[GW05, Gut05].

For a fixed state ψRA of the min-prover, it follows from Algorithm 3.13 that the
acceptance probability is equal to

1
2

(
1 +

1
2

∥∥∥N0
A→B(ρA) − N1

A→B(ρA)
∥∥∥

1

)
, (3.107)

where ρA = TrR[ψRA]. Since the min-prover plays first and his goal is to mini-
mize the acceptance probability, it follows that the acceptance probability of Al-
gorithm 3.15 is given by

1
2

(
1 + ‖N0 − N1‖�,min

)
, (3.108)

where
‖N0 − N1‖�,min B

1
2

inf
ρA

∥∥∥N0
A→B(ρA) − N1

A→B(ρA)
∥∥∥

1
. (3.109)
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Algorithm 3.15 Algorithm schematic for min trace distance of channels.

Input: Quantum circuits U0 and U1 that realize isometric extensions of the chan-
nels N0 and N1, respectively.

Output: Estimate of ‖N0 − N1‖�,min.

1: The min-prover prepares a state ψRA and sends system A to the verifier.
2: The verifier picks a classical bit i ∈ {0, 1} uniformly at random, applies the

channel N i
A→B, and sends system B to the max-prover.

3: The max-prover prepares a system F in the |0〉F state and acts on systems R, B,
and F with a unitary PRBF→T F′ to produce the output systems T and F′, where
T is a qubit system.

4: The max-prover sends system T to the verifier, who then performs a measure-
ment on system T , with outcome j ∈ {0, 1}. The verifier accepts if and only if
i = j.

Another way to estimate the minimum trace distance of channels in (3.106) is
to swap the roles of the max-prover and min-prover in Algorithm 3.15:

Algorithm 3.16 Algorithm schematic for min trace distance of channels, with
swapped roles.

Input: Quantum circuits U0 and U1 that realize isometric extensions of the chan-
nels N0 and N1, respectively.

Output: Estimate of ‖N0 − N1‖�,min.

1: The max-prover prepares a state ψRA and sends system A to the verifier.
2: The verifier picks a classical bit i ∈ {0, 1} uniformly at random, applies the

channel N i
A→B, and sends system B to the min-prover.

3: The min-prover prepares a system F in the |0〉F state and acts on systems R, B,
and F with a unitary PRBF→T F′ to produce the output systems T and F′, where
T is a qubit system.

4: The min-prover sends system T to the verifier, who then performs a measure-
ment on system T , with outcome j ∈ {0, 1}. The verifier accepts if and only if
i = j.

For a fixed state ψRA of the max-prover, it follows from (3.101) that the accep-
tance probability is equal to

1
2

(
1 −

1
2

∥∥∥N0
A→B(ρA) − N1

A→B(ρA)
∥∥∥

1

)
, (3.110)
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where ρA = TrR[ψRA]. Since the max-prover plays first and his goal is to maxi-
mize the acceptance probability, it follows that the acceptance probability of Al-
gorithm 3.15 is given by

1
2

(
1 −

1
2

inf
ρA

∥∥∥N0
A→B(ρA) − N1

A→B(ρA)
∥∥∥

1

)
. (3.111)

Although the quantities estimated by Algorithms 3.9 and 3.15 or 3.16 are sim-
ilar (and related to each other by standard inequalities relating trace distance and
fidelity [FvdG99]), the algorithms are very different in that the channel output
is available at the end of Algorithm 3.9, whereas it is not at the end of Algo-
rithms 3.15 and 3.16. This has implications for applications in which it is helpful
to have access to the channel output, for example, when one is trying to find the
fixed point of a quantum channel.

3.2.4 Generalization to multiple states, and channels

Each of the algorithms from the previous subsections has a generalization to mul-
tiple states, and channels. We go through them briefly here. The main idea is
that, rather than randomly picking from a set of two resources, the verifier picks
randomly from a set of multiple resources and then a prover has to guess which
one was chosen. The main difference with the binary case is that there is not a
closed-form expression for the acceptance probability in terms of a metric like the
trace distance or derived metrics, but rather the optimization is phrased as a semi-
definite program that can be solved numerically or used in some cases to obtain
analytical solutions (for example, if there is sufficient symmetry).

Suppose that we are given an ensemble {p(x), ρx
S }x∈X of quantum states. The

verifier picks x randomly according to p(x), prepares ρx
S , and the prover has to

guess which state was prepared. The acceptance probability is given by

pg({p(x), ρx}x∈X) B sup
{Λx

S }x∈X

∑
x∈X

p(x) Tr[Λx
Sρ

x
S ], (3.112)

where the optimization is over every POVM
{
Λx

S

}
x∈X

. In the case that |X| = 2, this
acceptance probability has the explicit form

1
2

(
1 +

∥∥∥pρ0
S − (1 − p) ρ1

S

∥∥∥
1

)
. (3.113)

91



To account for multiple states, we modify Algorithm 3.13 as follows: the ver-
ifier’s variable i ∈ {0, . . . , |X| − 1} is randomly selected and the prover’s guess j is
chosen from the same set. System T therein is generalized to be a dlog2 |X|e-qubit
system. When |X| is a power of two, there is a perfect match between the number
|X| of measurement outcomes and the dimension of system T . The verifier accepts
if the outcome j equals the state i that was picked. If |X| is not a power of two, the
following algorithm handles this case by coarse graining some of the measure-
ment outcomes together. This is relevant because most quantum computers are
qubit-based.

Algorithm 3.17 Algorithm schematic for trace distance of multiple states.

Input: Quantum states {ρx}x∈X, and probability distribution {p(x)}x∈X.
Output: Estimate of pg({p(x), ρx}x∈X).

1: The verifier selects an integer i ∈ {0, . . . , |X| − 1} at random according to p(i),
prepares the state ρi

S , and sends system S to the prover.
2: The prover prepares a system F composed of dlog2 |X|e qubits in the |0〉F state.

The prover then acts on systems S and F with a unitary PS F→T F′ , producing
the output systems F′ and T , where T is a system of dlog2 |X|e qubits.

3: The prover sends system T to the verifier, who then performs a computational
basis measurement on system T , with outcome j ∈ {0, . . . , 2dlog2 |X|e − 1}.

4: The verifier accepts under two conditions.

• j ≤ |X| − 1 and i = j.

• j > |X| − 1 and i = 0.

This algorithm is a direct generalization of Algorithm 3.13. To understand
its connection to (3.112), consider that, for a fixed unitary PS F→T F′ , its acceptance
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probability is given by∑
i∈{0,...,|X|−1}

p(i) Tr[(|i〉〈i|T ⊗ IF′)P(ρi
S ⊗ |0〉〈0|F)P†]

+ p(0)
2dlog2 |X|e∑

j=|X|

Tr[(| j〉〈 j|T ⊗ IF′)P(ρi
S ⊗ |0〉〈0|F)P†] (3.114)

=
∑

i∈{0,...,|X|−1}

p(i) Tr[〈0|F P†(|i〉〈i|T ⊗ IF′)P|0〉Fρi
S ]

+ p(0)
2dlog2 |X|e∑

j=|X|

Tr[〈0|F P†(| j〉〈 j|T ⊗ IF′)P|0〉Fρi
S ] (3.115)

=
∑

i∈{0,...,|X|−1}

p(i) Tr[Λi
Sρ

i
S ], (3.116)

where we have defined the following measurement operators:

Λ0
S B 〈0|F P†(|0〉〈0|T ⊗ IF′)P|0〉F +

2dlog2 |X|e∑
j=|X|

〈0|F P†(| j〉〈 j|T ⊗ IF′)P|0〉F , (3.117)

and for all i ∈ {1, . . . , |X| − 1}:

Λi
S B 〈0|F P†(|i〉〈i|T ⊗ IF′)P|0〉F . (3.118)

As such, we coarse grain all measurement outcomes in {0, |X| , |X| + 1, . . . , 2dlog2 |X|e}

into a single measurement outcome. By the Naimark extension theorem, every
measurement with |X| outcomes can be realized in this way, so that maximizing
the expression in (3.114) over every unitary P gives a value equal to that in (3.112).

On the one hand, if |X| is a power of two, then it follows that |X| = 2dlog2 |X|e and
the outcome j > |X| − 1 never occurs. On the other hand, if |X| is not a power of
two, then |X| < 2dlog2 |X|e and the outcome j > |X| − 1 does occur.

The acceptance condition is split into two conditions due to the unused mea-
surement outcomes when restricted to qubit subsystems and the number of states
is not a power of two. In case of qubit systems, by Naimark’s extension theorem,
measuring the ancilla qubits leads to a number of outcomes that is a power of two.
If the number of states is a power of two, we can create a one-to-one mapping be-
tween measurement outcomes and states. If the number of states is not a power
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of two, there are unassigned measurement outcomes. We resolve this issue by
assigning any unassigned outcomes to the first state. In effect, if the verifier mea-
sures one of these unassigned outcomes ( j > |X| − 1 from the algorithm above), it
is equivalent to measuring the first outcome i = 0. In other words, we combine the
POVM elements for any unassigned outcomes with the POVM element of the first
state. Since the prover picks the optimal unitary, this does not affect the overall
optimal acceptance probability.

Now suppose that we are given an ensemble {p(x),N x
A→B}x∈X of quantum chan-

nels. Then a similar modification of Algorithm 3.14 has acceptance probability

sup
ψRA,{Λx

RB}x∈X

∑
x∈X

p(x) Tr[Λx
RBN

x
A→B(ψRA)], (3.119)

where the optimization is over every state ψRA and POVM
{
Λx

RB

}
x∈X

. In the case
that |X| = 2, this acceptance probability has the explicit form

1
2

(
1 +

∥∥∥pN0
A→B − (1 − p)N1

A→B

∥∥∥
�

)
. (3.120)

Finally, we can generalize Algorithms 3.15 and 3.16, with the acceptance prob-
abilities respectively given by

inf
ρA

sup
{Λx

B}x∈X

∑
x∈X

p(x) Tr[Λx
BN

x
A→B(ρA)], (3.121)

sup
ρA

inf
{Λx

B}x∈X

∑
x∈X

p(x) Tr[Λx
BN

x
A→B(ρA)]. (3.122)

In the case that |X| = 2, these acceptance probabilities become

1
2

(
1 + inf

ρA

∥∥∥pN0
A→B(ρA) − (1 − p)N1

A→B(ρA)
∥∥∥

1

)
, (3.123)

1
2

(
1 − inf

ρA

∥∥∥pN0
A→B(ρA) − (1 − p)N1

A→B(ρA)
∥∥∥

1

)
. (3.124)

3.3 Performance evaluation of algorithms using a noiseless and
noisy quantum simulator

In this section, we present results obtained from numerically simulating Algo-
rithms 3.4–3.7 and Algorithm 3.13 on a noiseless quantum simulator and Algo-
rithms 3.8, 3.14, and 3.17 on both a noiseless and noisy quantum simulator. In
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the first subsection, we introduce and discuss the circuit ansatz employed in these
numerical experiments. In the next subsection, we discuss the form of the states
and channels used for the numerical simulations. In the following subsections,
we present the details of our numerical simulations of Algorithms 3.4–3.7 for fi-
delity of states, Algorithm 3.8 for the fidelity of channels, Algorithm 3.13 for trace
distance of states, Algorithm 3.14 for diamond distance of channels, and Algo-
rithm 3.17 for multiple state discrimination.

In the simulations below, we use a maximum number of iterations to be the
stopping condition. We noted that some algorithms - in particular, ones with mul-
tiple provers - were more prone to get stuck in local minima and optimization
loops. We found that, in these scenarios, using convergence as the stopping con-
dition could lead to an unbounded number of iterations. In these cases, we found
that using a maximum number of iterations was sufficient and effective.

All the program code for Algorithms 3.4, 3.5, 3.6, 3.7, 3.8, 3.13, 3.14, 3.17, and
corresponding SDPs can be found in the Supplementary Material of [RASW23].

3.3.1 Ansatz

To estimate the relevant quantities in this work, we employ the hardware-efficient
ansatz (HEA) [KMT+17]. The HEA is a problem-agnostic ansatz that depends on
the architecture and the connectivity of the given hardware. In this work, we
consider a fixed structure of the HEA. Let X, Y , and Z denote the Pauli matrices.
We define one layer of the HEA to consist of the single-qubit rotations e−iθ/2Ye−iδ/2X,
each of which acts on a single qubit and is parameterized by θ and δ, followed by
CNOTs between neighboring qubits. A CNOT between the control qubit k and
the target qubit ` is given by

e−iπ/2(|1〉〈1|k⊗(X`−I`)) = |0〉〈0|k ⊗ I` + |1〉〈1|k ⊗ X`. (3.125)

For our numerical experiments, we consider a sufficiently large number of lay-
ers of the HEA. In principle, both the circuit structure and the number of layers
of the HEA can be made random and this randomness can lead to better perfor-
mance of variational algorithms [BCV+21]. We leave the study of such ansatze for
future work.

The HEA is used both to create the states and channels, as well as to create
a parameterized unitary that replaces the provers. In the former two cases, the
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rotation angles are fixed, but in the prover scenario, the angles are parameters
that are optimized.

3.3.2 Test states and channels

To study the performance of our algorithms, we randomly select states and chan-
nels as follows. For n-qubit states, we apply m layers of the HEA with randomly
selected angles for rotation around the x- and y-axes on n + k qubits initialized to
the state |0〉〈0|. This procedure prepares a pure state on n + k qubits and hence, a
mixed state on n qubits of rank ≤ 2k.

To realize an n-qubit channel NA→B, we generate a unitary UAE′→BE on n + k
qubits such that

NA→B(ωA) B TrE

[
UAE′→BE(ωA ⊗ |0〉〈0|E′)(UAE′→BE)†

]
, (3.126)

where systems E′ and E each consist of k qubits. Due the Stinespring dilation
theorem [Sti55], this is a general approach by which arbitrary channels can be
realized.

For our experiments, we set U to consist of m layers of the HEA itself, with
randomly selected angles for rotation around the x- and y-axes on n + 1 qubits.
Tracing out one of the qubits gives a channel on n qubits, as required.

Several algorithms in our paper (see (3.6), (3.20), (3.60)) depend on having ac-
cess to unitaries of the form∑

i∈{0,1}

|i〉〈i|T ⊗ U i
S = |0〉〈0| ⊗ U0

S + |1〉〈1| ⊗ U1
S . (3.127)

These can be split into the sequential application of the following two controlled
unitaries:

|0〉〈0| ⊗ I + |1〉〈1| ⊗ U1
S ,

|1〉〈1| ⊗ I + |0〉〈0| ⊗ U0
S , (3.128)

of which our algorithms make use.
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3.3.3 Fidelity of states

In this section, we discuss the performance of Algorithms 3.4–3.7 in the noise-
less scenario to estimate the fidelity between two three-qubit mixed states. Al-
gorithms 3.4–3.7 require different numbers of qubits for estimating the fidelity
between ρ and σ. In particular, for this case, Algorithm 3.4 requires eight qubits,
along with access to controlled unitaries, as defined in (3.128). Algorithms 3.5, 3.6,
and 3.7 require 13, 10, and 8 qubits, respectively. We recall that Algorithms 3.4–3.6
require purifications of both ρ and σ, while Algorithm 3.7 relies only on access
to ρ and σ directly. Moreover, Algorithms 3.4 and 3.5 require measurements on
two qubits, and Algorithm 3.6 requires Bell measurements on ten qubits. Finally,
Algorithm 3.7 requires two single-qubit measurements.

We now summarize the HEA employed. For Algorithm 3.4, the prover uni-
tary is created using five layers of the HEA, which acts on four qubits. Similarly,
in Algorithm 3.5, we employ eight layers of the HEA that acts on six qubits. In
Algorithm 3.6, the ansatz acts on two qubits, and we consider four layers of it.
In Algorithm 3.7, the ansatz acts on four qubits, and we apply eight layers of it.
For our implementations, we picked these circuit depths so that the cost func-
tion is minimized. A more general framework allows for the ansatz structure to
be unfixed and instead variable, but we leave the detailed study of this, for our
algorithms, to future work [BCV+21].

We begin the training with a random set of variational parameters. We evalu-
ate the cost using a state vector simulator (noiseless simulator) [AAMA+21]. We
then employ the gradient-descent algorithm to obtain a new set of parameters. We
note that in general, the true fidelity between states ρ and σ is not known. Thus
the stopping criterion for these algorithms is a maximum number of iterations.
For our numerical experiments, we set the total number of iterations to be 300.
For each algorithm, we run ten instances of the algorithm and pick the best run
for generating Figure 3.10.

In Figure 3.10, we plot the results of the numerical simulations. The dashed-
dotted line represents the true fidelity between two random three-qubit quantum
states ρ and σ, as described above. Each algorithm converges to the true fidelity
with high accuracy within a finite number of iterations. As discussed above, for
each algorithm, the HEA is of a different size. Thus, it is not straightforward to
compare these different algorithms. In terms of the convergence rate, we find
that Algorithm 3.6 converges to the true fidelity faster than all other algorithms.
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Figure 3.10: Estimation of the fidelity between quantum states versus the num-
ber of iterations. We implement Algorithms 3.4–3.7 on a noiseless simulator to
estimate the fidelity between two three-qubit mixed states, each of rank ≤ 4. For
each variational algorithm, we employ the HEA, as defined in Section 3.3.1. In
particular, we start with a random parameter vector ~θ and then update it accord-
ing to a gradient-based optimization procedure. The dashed-dotted curve rep-
resents the true fidelity between two randomly chosen quantum states. In each
case, the optimization procedure converges to the true fidelity with high accu-
racy. Algorithms 3.4–3.7 achieve an absolute error in fidelity estimation of order
10−5, 10−4, 10−9, and 10−3, respectively.

Algorithms 3.4–3.7 achieve an absolute error in fidelity estimation of order 10−5,
10−4, 10−9, and 10−3, respectively.
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3.3.4 Trace distance of states

Using Algorithm 3.13, we estimate the normalized trace distance 1
2 ‖ρ − σ‖1 be-

tween two three-qubit states ρ and σ, each having rank ≤ 4, as defined above in
Section 3.3.2. For our numerical experiments, we use a noiseless simulator. Algo-
rithm 3.13 requires eight qubits in total and two single-qubit measurements. We
employ ten layers of the HEA, which acts on four qubits. Similar to the fidelity-
estimation algorithms detailed above, we begin with a random set of variational
parameters and update them using the gradient-descent algorithm.

As the true normalized trace distance between ρ and σ is assumed to be un-
known, we use a stopping criterion as the number of iterations, which we take to
be 300 iterations. For Algorithm 3.13, we run ten instances of it and pick the best
run for generating Figure 3.11.

In Figure 3.11, we plot the results of Algorithm 3.13. The dashed-dotted line
represents the true normalized trace distance between two random three-qubit
quantum states ρ and σ, as described above. The absolute error in trace-distance
estimation is of order 10−4.

3.3.5 Fidelity of channels

In this section, we discuss the performance of Algorithm 3.8 in both the noiseless
and noisy scenarios. The channels in question are realized by using parameter-
ized unitaries and tracing out ancilla qubits, as discussed in Section 3.3.2. The
algorithm employs a min-max optimization and thus requires two parameterized
unitaries representing the min- and max-provers, respectively. The controlled uni-
taries consist of one layer of the HEA, with each consisting of random rotations
about the x-axis, on two qubits, thereby realizing theN i

A→B channels acting on one
qubit, for i ∈ {0, 1}.

We now summarize the HEA employed in generating the min- and max-
provers. The min-prover unitary is generated using two layers of the HEA, which
acts on two qubits. The max-prover unitary is generated using two layers of the
HEA, which acts on three qubits. The rotation angles for both provers around the
x- and y-axes are chosen at random. The particular choices of the number of layers
are made so that the cost function is minimized.

We begin the training phase with a random set of variational parameters for
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Figure 3.11: Estimation of the normalized trace distance between quantum states
versus the number of iterations. We implement Algorithm 3.13 on a noiseless sim-
ulator to estimate the normalized trace distance between three-qubit mixed states,
each of rank four. Algorithm 3.13 achieves an absolute error in trace distance esti-
mation of order 10−4.

both parameterized unitaries. For the noiseless simulation, we evaluate the cost
using a state vector simulator (noiseless simulator) [AAMA+21]. For the noisy
simulation, we use the QASM-simulator with the noise model from IBM-Jakarta.
Since the number of parameters is significantly higher than the previous algo-
rithms, to speed up the convergence, we employ both the simultaneous pertur-
bation stochastic approximation (SPSA) method [Spa98] and the gradient-descent
method to obtain a new set of parameters.

The optimization is carried out in a zig-zag fashion, explained as follows. The
minimizing optimizer implements the SPSA algorithm and is allowed to run until
convergence occurs. Then, the maximizing optimizer, implementing the gradi-
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ent descent algorithm, runs for one iteration. We note that in general, the true
fidelity between the channels N0 and N1 is not known. Thus, the stopping crite-
rion for these algorithms is a maximum number of iterations. For our numerical
experiments, we set the total number of iterations to be 6000, mostly used in the
minimizing optimizer. The results of the numerical simulations are presented in
Figure 3.12.

Note that the graph presented in Figure 3.12 shows that the convergence is
highly non-monotonic, unlike the convergence behavior presented in previous
graphs. Each iteration consists of a decrease in the function value, followed by a
single increasing iteration. This is clearly indicative of the min-max optimization
nature of the algorithm. Furthermore, unlike other algorithms, the optimization
value in this algorithm can overshoot the true solution, due to the min-max nature
of the optimization. However, the noiseless plot indicates that, once it overshoots
the solution, it oscillates with decreasing amplitude and converges.

The noisy optimization converges as well, but it does not converge to the
known value of the root fidelity of the two channels. However, the parameters
found after convergence exhibit a noise resilience, as put forward in [SKCC20];
i.e., using the parameters obtained from the noisy optimization in a noiseless sim-
ulator gives a value much closer to the true value, as indicated by the solid orange
line in Figure 3.12.

3.3.6 Diamond distance of channels

In this section, we discuss the performance of Algorithm 3.14 in the noiseless and
noisy scenarios. Algorithm 3.14 requires eight qubits. Similar to the previous sec-
tion, the channels in question are realized using the procedure from Section 3.3.2.
The algorithm utilizes a max-max optimization and thus requires two parame-
terized unitaries representing the two max-provers. Each unitary U i

AE′→BE, for
i ∈ {0, 1}, consists of one layer of the HEA with random rotations about the x-
and y-axes, on two qubits, each thereby realizing the one-qubit channel N i

A→B.

We now summarize the HEA employed in generating the two provers. The
first prover, called the state-prover because its goal is to realize an optimal dis-
tinguishing state, is generated using two layers of the HEA, which acts on two
qubits. The second prover, called the max-prover, is generated using two layers of
the HEA, which acts on three qubits. The rotation angles for both provers around
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Figure 3.12: Estimation of the normalized fidelity between quantum channels ver-
sus the number of iterations. We implement Algorithm 3.8 to estimate the normal-
ized fidelity between two-qubit channels. The noiseless simulation achieves an
absolute error in fidelity estimation of order 10−4. The parameters obtained from
the noisy simulation, with the noise model from IBM-Jakarta, achieve an absolute
error of 10−2 on a noiseless simulator.

the x- and y-axes are chosen at random. The particular choices of the number of
layers are made so that the cost function is minimized.

We begin the training phase with a random set of variational parameters for
both parameterized unitaries. In the noiseless simulation, we evaluate the cost
using a state vector simulator (noiseless simulator). In the noisy setup, we use the
QASM-simulator with the noise model from IBM-Jakarta. Similar to the previous
section, we employ the SPSA optimization technique.

The optimization is carried out in two parts—the first part uses the COBYLA
optimizer [Pow94, VGO+20] (non-gradient based), and the second part uses the
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SPSA optimizer. In both stages, the optimization is carried out in a zig-zag fash-
ion, explained as follows. The first stage allows for moving quickly into the neigh-
bourhood of the actual solution, but then slows down dramatically. Once we ap-
proach the solution, we switch to a gradient-based method that converges to the
solution more quickly. In both stages, we allow the state-prover and the max-
prover to be optimized for a fixed number of iterations in a zig-zag manner. This
is because, in general, the true diamond distance between channels N0 and N1

is not known. Thus the stopping criterion for these algorithms is a maximum
number of iterations. For our numerical experiments, we set the total number of
iterations to be 1600. The results of the numerical simulations are presented in
Figure 3.13.

Note that the noiseless graph presented in Figure 3.13 shows that the conver-
gence is highly monotonic, unlike the fidelity of channels (see Figure 3.12), be-
cause the optimization is a max-max one, as opposed to the min-max nature of
Algorithm 3.8. The quick convergence, indicated by the lower number of itera-
tions, is a consequence of this difference.

The noisy simulation converges as well, and similar to the previous section, the
parameters exhibit a noise resilience. Once the COBYLA stage of the optimization
is completed, the SPSA optimization is more noisy, due to the perturbative nature
of the algorithm. Note that the COBYLA optimizer operates in batches of 30,
giving an impression of smoothness.

3.3.7 Multiple state discrimination

In this section, we discuss the performance of Algorithm 3.17 in the noisy and
noiseless scenarios. We consider a specific scenario of distinguishing three one-
qubit mixed states. Recall from Section 3.3.2 that the one-qubit states are gener-
ated by using two layers of the HEA on two qubits. We execute this on a qubit
system, and hence we use Algorithm 3.17. The algorithm requires twelve qubits in
total and three two-qubit measurements. The measurement is realized using a pa-
rameterized unitary and ancilla qubits. By Naimark’s extension theorem [Nai40],
an arbitrary POVM can be realized using this procedure, so that there is no loss
in expressiveness. The parameterized unitary required employs two layers of the
HEA, which acts on three qubits.

To speed up convergence, we use the SPSA algorithm for the optimization. As
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Figure 3.13: Estimation of the normalized diamond distance between quantum
channels versus the number of iterations. We implement Algorithm 3.14 to es-
timate the normalized diamond distance between one-qubit channels. Algo-
rithm 3.14 achieves an absolute error in diamond distance estimation of order 10−4.
The parameters obtained from the noisy simulation, with the noise model from
IBM-Jakarta, achieve an absolute error of 10−2 on a noiseless simulator.

the true value of the optimal acceptance probability between the three states is
assumed to be unknown, we set the stopping criterion to be a maximum number
of iterations, which we take to be 250 iterations.

In Figure 3.14, we plot the results of simulating Algorithm 3.17. The dashed-
dotted line represents the optimal acceptance probability of the three states, cal-
culated using the semi-definite program corresponding to (3.112). The noiseless
simulation converges to the known optimal acceptance probability. The noisy
optimization converges as well, but it does not converge to the known optimal
acceptance probability. However, similar to the previous sections, the parameters

104



10
0

10
1

10
2

Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
ce

pta
nc

e P
rob

ab
ilit

y

Algorithm 19 Noiseless
Algorithm 19 Noisy
Final noisy parameters on
noiseless simulator
True Acceptance Probability

Figure 3.14: Estimation of the optimal acceptance probability for Algorithm 3.17.
The noiseless simulation achieves an absolute error of order 10−4. The parame-
ters obtained from the noisy simulation, with the noise model from IBM-Jakarta,
achieve an absolute error of 10−3 on a noiseless simulator.

exhibit noise resilience, as indicated by the solid orange line in Figure 3.14.

3.4 Estimating distance measures as complexity classes

We now turn our attention to the intersection of our algorithms with quantum
computational complexity theory. In this section, we prove that several basic
quantum complexity classes can be reframed as distance and fidelity estimation
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problems. That is, we show that various distance and fidelity estimation prob-
lems are complete for various quantum complexity classes. Refs. [Wat09a, VW16]
provide reviews of basic concepts in quantum computational complexity theory
for interested readers.

In particular, here we summarize existing results linking estimation problems
to complexity classes, and furthermore, we prove that five new distance estima-
tion algorithms that are complete for some complexity classes of interest. First,
we prove that promise versions of the following estimation problems are BQP-
complete:

1. estimating the fidelity between two pure states,

2. estimating the fidelity between a pure state and a mixed state,

3. estimating the Hilbert–Schmidt distance of two arbitrary states.

Fourth, we prove that the promise problem version of estimating the fidelity be-
tween a pure state and a channel with arbitrary input is QMA-complete. Finally,
we show that the promise problem version of estimating the fidelity between a
pure state and a channel with a separable input state is QMA(2)-complete. In
Figure 3.15, we summarize the various quantum complexity classes and the rep-
resentative fidelity and distance estimation algorithms.

3.4.1 BQP-complete problems

First, we prove that promise versions of the problems of evaluating the fidelity
between two pure states, evaluating the fidelity between a mixed state and a pure
state, and evaluating the Hilbert–Schmidt distance of two arbitrary states are BQP-
complete. The definition of BQP can be found in Section 2.4.1.

Fidelity between two pure states

We now prove that the promise version of the problem of estimating the fidelity
between two pure states is BQP-complete. In this problem and all that follows,
the parameter x is the description of the circuits involved, and the length |x| is the
number of bits needed to describe these circuits.
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QIP-Complete
[KW00, Wat02a, RW05]

max
ρ,σ

F(N(ρ),M(σ))

QIP(2)-Complete
[Wat02a, HMW14]

max
σ

F(ρ,N(σ))

QSZK-Complete
[Wat02c, Wat09d]

F(ρ, σ)

QMA-Complete
max
σ

F(ψ,N(σ))

QMA(2)-Complete
max
σ∈SEP

F(ψ,N(σ))

BQP-Complete
F(ψ, φ)
F(ψ, ρ)
‖ρ − σ‖2

Figure 3.15: List of distance estimation problems and the corresponding quantum
complexity class. Entries in bold are the results of our paper. In this diagram, ψ
and φ are pure states, ρ and σ are mixed states, and N andM are channels. Note
that ρ and σ may be of different dimensions, depending on the context. The cells
are organized such that if a cell is connected to a cell above it, the complexity class
for the lower cell is a subset of that for the the higher cell. For example, QMA is a
subset of both QIP(2) and QMA(2).

Problem 3.1 [(α, β)-Fidelity-Pure-Pure]. Let α and β be such that 0 ≤ α < β ≤ 1. Given
are descriptions of circuits Uψ

S and Uφ
S that prepare the pure states ψS and φS , respectively.

Decide which of the following holds.

Yes: F(ψS , φS ) ≥ 1 − α, (3.129)
No: F(ψS , φS ) ≤ 1 − β. (3.130)

Theorem 3.8. The promise problem Fidelity-Pure-Pure is BQP-complete.
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1. (α, β)-Fidelity-Pure-Pure is in BQP for all α < β. (It is implicit that the gap between
α and β is larger than an inverse polynomial in the input length.)

2. (ε, 1 − ε)-Fidelity-Pure-Pure is BQP-hard, even when ε decays exponentially in the
input length.

Thus, (α, β)-Fidelity-Pure-Pure is BQP-complete for all (α, β) such that 0 < α < β < 1.

Proof. The containment of (α, β)-Fidelity-Pure-Pure in BQP is a direct consequence
of Algorithm 3.1.

So we focus on proving the hardness result. Consider an arbitrary problem L
in BQP. Thus, there exists a family Q of circuits such that (2.126) and (2.127) hold.
Given an instance x, the acceptance probability of the BQP algorithm is

pacc = ‖(〈1|D ⊗ IG)Q |x〉S |0〉A‖
2
2

= 〈x|S 〈0|A Q†(|1〉〈1|D ⊗ IG)Q |x〉S |0〉A . (3.131)

To prove the hardness result (i.e., to see that this is an instance of Fidelity-Pure-
Pure), we use the BQP-subroutine theorem [BBBV97]. Intuitively, we act with the
circuit QS A→DG on the input |x〉S |0〉A, apply a CNOT gate from the decision qubit to
an ancillary qubit initialized to |0〉C, apply the inverse unitary Q†, measure the out-
put qubits, and accept if we get the state |x〉S |0〉A |1〉C. The acceptance probability
of this procedure is equal to

p̃acc =
∣∣∣(〈x|S 〈0|A 〈1|C)Q† CNOTDC Q(|x〉S |0〉A |0〉C)

∣∣∣2 . (3.132)

Expanding CNOTDC as

CNOTDC B |0〉〈0|D ⊗ IC + |1〉〈1|D ⊗ XC, (3.133)

where XC denotes the Pauli-X operator, it follows that

p̃acc =
∣∣∣〈x|S 〈0|A Q†(|1〉〈1|D ⊗ IG)Q |x〉S |0〉A

∣∣∣2 . (3.134)

Comparing this expression to (3.131), we see that the modified circuit has an ac-
ceptance probability equal to the square of the acceptance probability of the orig-
inal BQP problem. Thus, by repeating the modified algorithm sufficiently many
times, we can estimate the acceptance probability p̃acc, and by taking a square root,
we can output an estimate of the acceptance probability pacc of the original prob-
lem. In Appendix B.7, we derive the number of samples required to estimate pacc

with accuracy ε and error probability δ.
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The last step to be shown is that the modified acceptance probability p̃acc can
be rewritten as the fidelity between two pure states. From (3.132), we see that

p̃acc =
∣∣∣(〈x|S 〈0|A 〈1|C)Q† CNOTDC Q(|x〉S |0〉A |0〉C)

∣∣∣2
= F(|ψ〉〈ψ|, |φ〉〈φ|), (3.135)

where

|ψ〉 B |x〉S |0〉A |1〉C , (3.136)

|φ〉 B Q† CNOTDC Q |x〉S |0〉A |0〉C . (3.137)

Thus, an arbitrary instance of a BQP problem can be rewritten as an instance of
the fidelity between two pure states, proving that Fidelity-Pure-Pure is indeed a
BQP-hard problem.

Fidelity between a pure state and a mixed state

Problem 3.2 [(α, β)-Fidelity-Pure-Mixed]. Let α and β be such that 0 ≤ α < β ≤ 1.
Given are descriptions of circuits Uρ

RS and Uψ
S that prepare a purification of a mixed state

ρS and a pure state ψS , respectively. Decide which of the following holds.

Yes: F(ρS , ψS ) ≥ 1 − α, (3.138)
No: F(ρS , ψS ) ≤ 1 − β. (3.139)

Theorem 3.9. The promise problem Fidelity-Pure-Mixed is BQP-complete.

1. (α, β)-Fidelity-Pure-Mixed is in BQP for all α < β. (It is implicit that the gap
between α and β is larger than an inverse polynomial in the input length.)

2. (ε, 1 − ε)-Fidelity-Pure-Mixed is BQP-hard, even when ε decays exponentially in
the input length.

Thus, (α, β)-Fidelity-Pure-Mixed is BQP-complete for all (α, β) such that 0 < α < β < 1.

Proof. The containment of (α, β)-Fidelity-Pure-Mixed in BQP is a direct conse-
quence of Algorithm 3.3.

So we focus on proving the hardness result. Let L be an arbitrary promise prob-
lem in BQP, and let

{
φx

DG

}
x

be a family of efficiently preparable pure states witness-
ing membership of L in BQP. System D is a decision qubit indicating acceptance
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or rejection of x, and system G is a garbage system that purifies D. Suppose that
the family

{
φx

DG

}
x

has completeness 1 − δ and soundness δ. If x is a yes-instance of
L, then, by the definition of BQP, it follows that ‖〈1|D|φx〉DG‖

2
2 ≥ 1 − δ. On the other

hand, if x is a no-instance of L, then ‖〈1|D|φx〉DG‖
2
2 ≤ δ. Since

‖〈1|D|φx〉DG‖
2
2 = 〈1|D TrG[φx

DG]|1〉D (3.140)
= F(|1〉〈1|D,TrG[φx

DG]), (3.141)

it follows directly that this is an instance of (1 − δ, δ)-Fidelity-Pure-Mixed, given
that the reduced state TrG[φx

DG] can be prepared efficiently, as well as the state
|1〉〈1|D. The desired hardness result then follows because BQP(c, s) ⊆ BQP(δ, 1 − δ),
for every δ exponentially small in the input length.

Hilbert–Schmidt distance

The next result we prove is that the promise version of the problem of estimating
the normalized Hilbert–Schmidt distance of two arbitrary states is BQP-complete.
Recall that the normalized Hilbert–Schmidt distance of two states ρ and σ is given
by

1
√

2
‖ρ − σ‖2 B

1
√

2

√
Tr[(ρ − σ)2]

=
1
√

2

√
Tr[ρ2] + Tr[σ2] − 2 Tr[ρσ]. (3.142)

If ρ = σ, then the Hilbert–Schmidt distance is equal to zero. The prefactor of
2−1/2 is the correct normalization by the following argument. Since Tr[ρσ] ≥ 0, the
maximum value of the normalized distance satisfies

1
√

2

√
Tr[ρ2] + Tr[σ2] − 2 Tr[ρσ]

≤
1
√

2

√
Tr[ρ2] + Tr[σ2]

≤ 1, (3.143)

where the second inequality follows because the purity of an arbitrary state ρ
satisfies Tr[ρ2] ≤ 1. The upper bound is achieved by pure orthogonal states.
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Problem 3.3 [(α, β)-Hilbert–Schmidt-Distance]. Let α and β be such that 0 ≤ α < β ≤ 1.
Given are descriptions of circuits Uρ

RS and Uσ
RS that prepare a purification of a mixed states

ρS and σS , respectively. Decide which of the following holds.

Yes:
1
√

2
‖ρS − σS ‖2 ≥ 1 − α, (3.144)

No:
1
√

2
‖ρS − σS ‖2 ≤ 1 − β. (3.145)

Theorem 3.10. The promise problem Hilbert–Schmidt-Distance is BQP-complete.

1. (α, β)-Hilbert–Schmidt-Distance is in BQP for all α < β. (It is implicit that the gap
between α and β is larger than an inverse polynomial in the input length.)

2. (ε, 1 − ε)-Hilbert–Schmidt-Distance is BQP-hard, even when ε decays exponen-
tially in the input length.

Thus, (α, β)-Hilbert–Schmidt-Distance is BQP-complete for all (α, β) such that 0 < α <
β < 1.

Proof. To show that the problem is BQP-complete, we need to demonstrate two
facts: first, that the problem is in BQP, and second, that it is BQP-hard. Let us
begin by proving that the problem is in BQP. This part of the proof is well known
and understood by now, and it has been used in many quantum algorithms. We
discuss it here for completeness. The intuitive idea is to estimate each term in
(3.143) separately using a swap test. A term of the form Tr[ρσ], where ρ and σ are
n-qubit states, can be estimated by repeatedly performing a swap test sufficiently
many times to get a good estimate. Since there are only three terms to estimate, it
follows that the problem is in BQP.

Next, we show that any problem in the BQP class can be reduced to this prob-
lem. A simpler way to show this is to map a known BQP-complete problem to
our problem. We now show that the BQP-complete Fidelity-Pure-Pure problem
can be reduced to this problem. A special case of the Hilbert–Schmidt-Distance
problem is when both inputs are pure states. In this scenario, the normalized
Hilbert–Schmidt distance is given by

1
√

2
‖|ψ〉〈ψ| − |φ〉〈φ|‖2 =

√
1 − |〈ψ|φ〉|2

=
√

1 − F(ψ, φ). (3.146)
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Then the YES instance condition in (3.144) and (3.146) imply that F(ψ, φ) ≤ α(2−α),
in the case of a YES instance of Hilbert–Schmidt-Distance, and the NO instance
condition in (3.145) and (3.146) imply that F(ψ, φ) ≥ β(2 − β), in the case of a NO
instance of Hilbert–Schmidt-Distance. Since the function x→ x(2− x) is a bijection
on the unit interval [0, 1], it follows that the ability to decide Hilbert–Schmidt-
Distance for pure states implies the ability to decide Fidelity-Pure-Pure, which is a
BQP-complete problem by Theorem 3.8. We thus conclude that Hilbert–Schmidt-
Distance is BQP-Hard. This, along with the fact that the problem is in the BQP
class, concludes the proof.

Remark 3.1. The normalized Schatten-p distance between two states ρ and σ is defined
as

1
21/p ‖ρ − σ‖p B

1
21/p (Tr[|ρ − σ|p])1/p. (3.147)

We can formulate promise problems from these quantities, generalizing Hilbert–Schmidt-
Distance in Problem 3.3. Plugging pure states ψ and φ into (3.147) and exploiting the
fact that the eigenvalues of ψ − φ are equal to | sin θ| and −| sin θ| [Wil17, Proof of Theo-
rem 9.3.1], where θ satisfies F(ψ, φ) = cos2 θ, it follows that

1
21/p ‖ψ − φ‖p =

√
1 − F(ψ, φ) (3.148)

for all p ≥ 1. Thus, by the same reasoning given in the second part of the proof of Theo-
rem 3.10, we conclude that these promise problems are all BQP-hard.

Now consider that estimating the Schatten-2k distance between two states, where k ∈
N, is in BQP. For constant k, each term in the expansion of ‖ρ − σ‖2k

2k = Tr[(ρ−σ)2k] can be
estimated in constant quantum depth [QKW24] after the circuits that prepare multiples
copies of ρ and σ are executed. Thus, combining with the above, we conclude that, for
each constant k ∈ N, the promise version of the problem of estimating 1

21/(2k) ‖ρ − σ‖2k is a
BQP-complete problem.

3.4.2 Fidelity between a pure state and a channel (QMA-
complete)

Next, we provide a proof that the promise version of the problem of evaluating
the fidelity between a channel and a pure state is QMA-complete. The definition
of QMA can be found in Section 2.4.3.
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Problem 3.4 [(α, β)-Fidelity-Channel-Pure]. Let α and β be such that 0 ≤ α < β ≤ 1.
Given are descriptions of circuits UNS R→BE and Uψ

B that prepare a unitary dilation of a
channel

NS→B(·) B TrE[UNS R→BE((·)S ⊗ |0〉〈0|R)(UNS R→BE)†] (3.149)

and a pure state ψB B Uψ
B |0〉〈0|B(Uψ

B)†, respectively. Decide which of the following holds:

Yes: max
ρS

F(NS→B(ρS ), ψB) ≥ 1 − α, (3.150)

No: max
ρS

F(NS→B(ρS ), ψB) ≤ 1 − β, (3.151)

where the maximization is over every input density operator ρS .

Theorem 3.11. The promise problem Fidelity-Channel-Pure is QMA-complete.

1. (α, β)-Fidelity-Channel-Pure is in QMA for all α < β. (It is implicit that the gap
between α and β is larger than an inverse polynomial in the input length.)

2. (ε, 1 − ε)-Fidelity-Channel-Pure is QMA-hard, even when ε decays exponentially
in the input length.

Thus, (α, β)-Fidelity-Channel-Pure is QMA-complete for all (α, β) such that 0 < α < β <
1.

Proof. To show that the problem is QMA-complete, we need to demonstrate two
facts: first, that the problem is in QMA, and second, that it is QMA-hard.

Let us begin by proving that the problem is in QMA. The intuitive idea is that
the prover sends an optimal state ρS to the verifier, who then performs the channel
NS→B on it, followed by the unitary (Uψ

B)†. The verifier then performs a computa-
tional basis measurement on all registers of system B and accepts if and only if the
all-zeros measurement outcome occurs. Indeed, the acceptance probability of this
scheme is precisely equal to the fidelity in (3.150):

〈0|B(Uψ
B)†NS→B(ρS )Uψ

B |0〉B
= 〈ψ|SNS→B(ρS )|ψ〉S
= F(NS→B(ρS ), ψB). (3.152)

To bring the original expression more closely to the form given in (2.130), observe
that

〈0|B(Uψ
B)†NS→B(ρS )Uψ

B |0〉B = 〈1|BXB(Uψ
B)†×

TrE[UNS R→BE(|0〉〈0|R ⊗ ρS )(UNS R→BE)†]Uψ
BXB|1〉B, (3.153)
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where XB is understood to be the tensor power Pauli X operator acting on all
qubits of the B register. To bring the final expression exactly into the form in
(2.130), we need a single decision qubit that we measure. We can use a multi-
controlled Toffoli gate from the B register to a single qubit decision qubit. Thus, if
we identify x with 0, σ with ρS , and Qn with (XB ⊗ IE) ◦ ((Uψ

B)† ⊗ IE) ◦ UNS R→BE, it
follows that the problem belongs to the QMA class.

Next, we show that any problem in the QMA class can be polynomially re-
duced to this problem. Let P be an arbitrary problem in the QMA class. This
implies that (2.130) and (2.133) must hold. This problem can then be thought of as
a fidelity problem with a channelMx defined as

Mx
S AP→D(·) B TrG[Q(|x〉〈x|S ⊗ |0〉〈0|A ⊗ (·))Q†]. (3.154)

Furthermore, we identify the state ψ from the fidelity problem with |1〉〈1|D, and
then we find that

〈1D|TrG[Q(|x〉〈x|S ⊗ |0〉〈0|A ⊗ σP)Q†)]|1〉D
= 〈1|GM

x
S AP→D(σ) |1〉G (3.155)

= F(Mx(σ), |1〉〈1|). (3.156)

It follows directly that this is an instance of (1 − a(|x|), 1 − b(|x|))-Fidelity-Channel-
Pure, given that the channel Mx can be prepared efficiently, as well as the state
|1〉〈1|. The desired hardness result then follows because QMA(1− a(|x|), 1− b(|x|)) ⊆
QMA(δ, 1 − δ), for every δ exponentially small in the input length.

3.4.3 Fidelity between a pure state and a channel with separable
input (QMA(2)-complete)

Lastly, we provide a proof for the result that the promise version of the problem of
evaluating the fidelity between a pure state and a channel with a separable state
as input is QMA(2)-complete. A state is separable if and only if is it not entangled.
A separable state σS R can be expanded as follows:

σS R =
∑

k

p(k)|ϕk〉〈ϕk|S ⊗ |φ
k〉〈φk|R, (3.157)

where {p(k)}k is a probability distribution and {|ϕk〉〈ϕk|S }k and {|φk〉〈φk|R}k are sets of
pure states. SEP is defined as the set of all separable states.
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Problem 3.5 [(α, β)-Fidelity-Pure-Channel-Sep-Inp]. Let α and β be such that 0 ≤ α <
β ≤ 1. Given are descriptions of circuits UNS RE→AE′ and Uψ

A that prepare a unitary dilation
of a channel

NS R→A(·) B TrE′[UNS RE→AE′((·)S R ⊗ |0〉〈0|E)(UNS RE→AE′)
†], (3.158)

and a pure state ψA, respectively. Decide which of the following holds:

Yes: max
σS R∈SEP

F(NS R→A(σS R), ψA) ≥ 1 − α, (3.159)

No: max
σS R∈SEP

F(NS R→A(σS R), ψA) ≤ 1 − β. (3.160)

Theorem 3.12. The promise problem Fidelity-Pure-Channel-Sep-Inp is QMA(2)-
complete.

1. (α, β)-Fidelity-Pure-Channel-Sep-Inp is in QMA(2) for all α < β. (It is implicit that
the gap between α and β is larger than an inverse polynomial in the input length.)

2. (ε, 1 − ε)-Fidelity-Pure-Channel-Sep-Inp is QMA(2)-hard, even when ε decays ex-
ponentially in the input length.

Thus, (α, β)-Fidelity-Pure-Channel-Sep-Inp is QMA(2)-complete for all (α, β) such that
0 < α < β < 1.

Proof. To show that the problem is QMA(2)-complete, we need to demonstrate
two facts: first, that the problem is in QMA(2), and second, that it is QMA(2)-
hard. Let us begin by proving that the problem is in QMA(2). The intuitive idea is
that the two provers, using shared randomness, send an optimal separable state
σS R to the verifier, who then performs the channel NS R→A on it, followed by the
unitary (Uψ

A)†. (Note that QMA(2) remains unchanged if the provers have access
to shared randomness [HM10].) The verifier then performs a computational basis
measurement on all registers of system A and accepts if and only if the all-zeros
measurement outcome occurs.

Consider that a separable state can be decomposed as

σS R =
∑

k

p(k)|ϕk〉〈ϕk|S ⊗ |φ
k〉〈φk|R. (3.161)
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Indeed, the acceptance probability of this scheme is precisely equal to the fidelity
in (3.159):

F(NS R→A(σS R), ψA)
= 〈ψ|ANS R→A(σS R)|ψ〉A

=
∑

k

p(k)〈ψ|ANS R→A(|ϕk〉〈ϕk|S ⊗ |φ
k〉〈φk|R)|ψ〉A.

The final expression is an average of individual elements. Thus, taking a maxi-
mization over all separable states and noting that the maximum is always greater
than the average, we conclude that

max
σS R∈SEP

F(NS R→A(σS R), ψA)

= max
|ϕ〉S ,|φ〉R

〈ψ|ANS R→A(ϕS ⊗ φR) |ψ〉A

= max
|ϕ〉S ,|φ〉R

〈0|A (Uψ
A)†NS R→A(ϕS ⊗ φR)Uψ

A |0〉A . (3.162)

Thus, we see that

max
σS R∈SEP

F(NS R→A(σS R), ψA) = max
|ϕ〉S ,|φ〉R

〈1|A XA×

(Uψ
A)† TrE′[UNS RE→AE′(|0〉〈0|E ⊗ ϕS ⊗ φR)×

(UNS RE→AE′)
†]Uψ

AXA |1〉A , (3.163)

where XA is understood to be the tensor-power Pauli X operator acting on all
qubits of the A register. To bring the final expression into the precise form in
(2.134), we need a single decision qubit that we measure. We can use a multi-
controlled Toffoli gate from the A register to a single qubit decision qubit. Thus, if
we identify x with 0, ρwith ϕS ,σwith φR and Qn with (XA⊗IR)◦((Uψ

A)†⊗IR)◦UNS RE→AE′ ,
it follows that the problem belongs to the QMA(2) class.

Next, we show that any problem in the QMA(2) class can be polynomially
reduced to this problem. Let P be an arbitrary problem in the QMA(2) class. This
implies that (2.134) and (2.136) must hold. This problem can then be thought of as
a fidelity problem with a channelMx defined as

Mx
S AP1P2→D(·) B TrG[Qn(|x〉〈x|S ⊗ |0〉〈0|A ⊗ (·)P1P2)Q

†
n]. (3.164)
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Furthermore, by identifying the state ψ from the fidelity problem with |1〉〈1|, then
we find that

〈1|TrG[Q(|x〉〈x|S ⊗ |0〉〈0|A ⊗ ψ1 ⊗ ψ2)Q†]|1〉 (3.165)
= 〈1|Mx(ψ1 ⊗ ψ2)|1〉 (3.166)
= F(Mx(ψ1 ⊗ ψ2), |1〉〈1|). (3.167)

It follows directly that this is an instance of (1 − a(|x|), 1 − b(|x|))-Fidelity-Channel-
Pure, given that the channel Mx can be prepared efficiently, as well as the state
|1〉〈1|. The desired hardness result then follows because QMA(1− a(|x|), 1− b(|x|)) ⊆
QMA(δ, 1 − δ), for every δ exponentially small in the input length (see [HM10,
Theorem 9]).

3.5 Conclusion

In this paper, we have delineated several algorithms for estimating distinguisha-
bility measures on quantum computers. All of the measures are based on trace
distance or fidelity, and we have considered them for quantum states and chan-
nels. Many of the algorithms rely on interaction with a quantum prover, and in
these cases, we have replaced the prover with a parameterized quantum circuit.
As such, these methods are not guaranteed to converge for all possible states and
channels. It is an interesting open question to determine conditions under which
the algorithms are guaranteed to converge and run efficiently.

We have also simulated several of the algorithms in both the noiseless and
noisy scenarios. We found that the simulations converge well for all states and
channels considered, and for all algorithms simulated. As more advanced quan-
tum computers become available (with more qubits and greater reliability), it
would be interesting to simulate our algorithms for states and channels involving
larger numbers of qubits. All of our Python code is written in a modular way, such
that it will be straightforward to explore this direction. Lastly, we proved several
complexity-theoretic results about various distance estimation algorithms; in par-
ticular, we showed and, in some cases, recalled that there is a fidelity or distance
estimation problem that is complete for the commonly studied complexity classes
BQP, QMA, QMA(2), QSZK, QIP(2), and QIP.

Going forward from here, it remains open to determine methods for estimat-
ing other distinguishability measures such as the Petz–Rényi relative entropy
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[Pet85, Pet86] and the sandwiched Rényi relative entropy [MLDS+13, WWY14] of
channels [LKDW18]. More generally, one could consider distinguishability mea-
sures beyond these. One desirable aspect of the algorithms appearing in this pa-
per is that they provide a one-shot interpretation for the various distinguishabil-
ity measures as the maximum acceptance probability in a quantum interactive
proof (with the trace-distance based algorithms and interpretations being already
known from [Wat02c, RW05, GW07, Gut09, Gut12]). However, it is unclear to us
whether one could construct a quantum interactive proof for which the maxi-
mum acceptance probability is related to the Petz– or sandwiched Rényi relative
entropy of a channel.

Note added: While finalizing the results of our initial arXiv post [ARSW21], we
noticed the arXiv post [BBC21], which is related to the contents of Section 3.2.
Ref. [BBC21] is now published as [BBC22].
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Chapter 4

Symmetry

Symmetry, as wide or as narrow as you may define its meaning, is one idea by
which man through the ages has tried to comprehend and create order, beauty,
and perfection. -— Hermann Weyl, Symmetry (1952)

This chapter is based on collaborative work with Dr. Margarite L. LaBorde,
and Dr. Mark M. Wilde [LRW23, RLW25]. Throughout this section, ‘we’ refers to
all three collaborators.

Symmetry plays a fundamental role in physics [FR96, Gro96a]. The evolu-
tion of a closed physical system is dictated by a Hamiltonian, which often pos-
sesses symmetry that limits transitions from one state to another in the form
of superselection rules [WWW52, AS67]. Permutation symmetry in the exten-
sion of a bipartite quantum state indicates a lack of entanglement in that state
[Wer89a, DPS02, DPS04]. This permutation symmetry limits entanglement, which
relates to fundamental principles of quantum information like the no-cloning the-
orem [Par70, Die82, WZ82] and entanglement monogamy [Ter04]. Additionally,
the lack of a shared reference frame between two parties implies that a quan-
tum state prepared relative to another party’s reference frame respects a cer-
tain symmetry and is less useful than one breaking that symmetry [BRS07]. In
all of these cases, a state respecting a symmetry is less resourceful than one
breaking it. In more recent years, quantum resource theories have been pro-
posed for each of the above scenarios (asymmetry [MS13, MS14], unextendibility
[KDWW19, KDWW21], and frameness [GS08]) in order to quantify the resource-
fulness of quantum states (see [CG19] for a review). As such, it is useful to be able
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to test whether a quantum state possesses symmetry and to quantify how much
symmetry it possesses.

In this chapter, we show how a quantum computer can test for symmetries
of quantum states and channels generated by quantum circuits. In fact, our
quantum-computational tests actually quantify how symmetric a state or chan-
nel is. Given that asymmetry (i.e., breaking of symmetry) is a useful resource in a
wide variety of contexts while being potentially difficult for a classical computer
to verify, our tests are helpful in determining how useful a state will be for certain
quantum information processing tasks. Additionally, our tests are in the spirit
of the larger research program of using quantum computers to understand fun-
damental quantum-mechanical properties of high-dimensional quantum states,
such as symmetry and entanglement, that are out of reach for classical comput-
ers. Here, we give explicit algorithmic descriptions of our tests, connect to known
applications of interest, and provide a general framework that facilitates new ap-
plications and research in this area. We augment these contributions by providing
novel resource-theoretic results as well.

We begin our development in Section 4.1 by introducing a general form of
symmetry of quantum states that captures both the extendibility of bipartite states
[Wer89a, DPS02, DPS04], as well as symmetries of a single quantum system with
respect to a group of unitary transformations [MS13, MS14]. This generalization
allows for incorporating several kinds of symmetry tests into a single framework.
We call this notion G-symmetric extendibility, and we discuss two different forms
of it.

In Section 4.2 we move on to an important contribution of our paper—namely,
how a quantum computer can test for and estimate quantifiers of symmetry. These
quantifiers are collectively called maximum symmetric fidelities, with more particu-
lar names given in what follows. We prove that our quantum computational tests
of symmetry have acceptance probabilities precisely equal to the various quan-
tifiers. These results endow these resource-theoretic measures with operational
meanings and allow us to estimate them to arbitrary precision. Using complexity-
theoretic language, we demonstrate that several of these quantum-computational
tests of symmetry can be conducted in the form of a quantum interactive proof
(QIP) system consisting of two quantum messages exchanged between a veri-
fier and a prover [Wat09b, VW16]. Our results thus generalize previous results
in the context of unextendibility and entanglement of bipartite quantum states
[HMW14]; additionally, we go on to clarify the relation between our results and
previous ones (Section 4.3). Simpler forms of the tests can be conducted without
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the aid of a prover and are thus efficiently computable on a quantum computer.

In Section 4.3, we show how the established concepts of k-extendibility or k-
Bose extendibility [Wer89a, DPS02, DPS04] can be recovered as special cases of
our symmetry tests for both bipartite and multipartite states. These examples are
particularly interesting as they serve as tests of separability.

Section 4.4 shows that the maximum symmetric fidelities can be calculated
by means of semi-definite programs, which is helpful for benchmarking the out-
puts of the quantum algorithms for sufficiently small circuits. This follows from
combining the known semi-definite program for fidelity [Wat13] with the semi-
definite constraints corresponding to the symmetry tests. Furthermore, we em-
ploy representation theory [Ste12] to simplify some of the semi-definite programs
even further, by making use of the block-diagonal form that results from perform-
ing a group twirl on a state.

We follow this in Section 4.5 by demonstrating the use of variational quantum
algorithms for estimating the maximum symmetric fidelities for various example
groups. In general, this approach is not guaranteed to estimate the maximum
symmetric fidelities precisely, as the parameterized circuit used is not able to real-
ize an arbitrarily powerful quantum computation. This approach thus leads only
to lower bounds on the maximum symmetric fidelities. However, we find that
this heuristic approach performs well for a variety of example groups, includ-
ing symmetry tests with respect to Z2, the triangular dihedral group, a collective
unitary action, etc. We note that a recent work adopted a similar variational ap-
proach for estimating the fidelity of quantum states generated by quantum circuits
[CSZW22]. It is well known that this latter problem is QSZK-complete [Wat02c]
and thus likely difficult for quantum computers to solve in general. It remains an
open question to determine how well this variational approach performs gener-
ally, beyond the examples considered in this paper. We note that the algorithms
defined in this work rely on local measurements alone and, as a consequence of
the results of [CSV+213], should not suffer from the barren plateau problem in
which global cost functions become untrainable. Since we have only conducted
simulations of our algorithms for small quantum systems, it remains open to pro-
vide evidence that our algorithms will avoid the barren plateau problem for larger
systems.
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4.1 Notions of symmetry

In this section, we review the notions of symmetry presented in [MS13, MS14,
LRW23, RLW25].

Definition 4.1 [G-symmetric]. Let G be a group with projective unitary representation
{US (g)}g∈G, and let ρS be a state of system S . The state ρS is symmetric with respect to G
[MS13, MS14] if

ρS = US (g)ρS US (g)† ∀g ∈ G. (4.1)

G-symmetry is the usual notion of symmetry considered in most physical con-
texts. For example, in [RBN+22, LSS+22], the authors use G-symmetric states in
various quantum machine learning applications, primarily in classification algo-
rithms where the labeling of the state should remain invariant. Additionally, test-
ing the incoherence of a state in the vein of [SAP17, BCP14] is a special case of a
G-symmetry test where the group is the cyclic group of order |G|.

Expanding upon this definition, we recall the definition of G-Bose symmetry, a
stronger notion of symmetry. G-Bose symmetry implies G-symmetry, though the
reverse implication is not true in general. G-Bose symmetry checks if a state be-
longs to the symmetric subspace induced by the group representation. This more
mathematical notion of symmetry has proven useful in deriving important re-
sults, such as the quantum de Finetti theorem [Har13]. As a practical application,
a circuit construction for projecting onto the symmetric subspace corresponding
to the standard symmetric group [BBD+97] has been used in a number of quan-
tum computational tests of entanglement [HMW14, GHMW15, LRW23, BLW23].
We give the definition of G-Bose symmetry below.

Definition 4.2 [G-Bose-symmetric]. Let G be a group with unitary representation
{US (g)}g∈G. A state ρS is Bose-symmetric with respect to G if

ρS = US (g)ρS ∀g ∈ G. (4.2)

The condition in (4.2) is equivalent to the condition

ρS = ΠG
S ρS ΠG

S , (4.3)

where the projector ΠG
S is defined as

ΠG
S B

1
|G|

∑
g∈G

US (g). (4.4)
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We note here that the notion of G-Bose-symmetry can be generalized to com-
pact Lie groups. In this case, one requires an invariant measure, which exists for
all such groups. An important example in quantum information is the unitary
group equipped with the Haar measure. See [Har13, Proposition 2] for mathe-
matical details of how the projector ΠG

S is defined in this case. Throughout our
paper, however, we focus exclusively on finite groups.

Both of the aforementioned symmetry notions (G-symmetry and G-Bose-
symmetry) can be expanded to scenarios in which the tester has limited access
to the state of interest. For example, one can test whether, given a part of a state,
there exists an extension that is symmetric. These notions lead to further, perti-
nent symmetry tests. For instance, when the group in question is the permutation
group, G-Bose extendibility is relevant for detecting entanglement [NOP09] and
efficiently bounding quantum discord [Pia16]. Similarly, G-symmetric extendible
states have been studied in the context of entanglement distillability [Now16] and
k-extendibility [Wer89a, DPS02, DPS04, BC12, KDWW19].

Definition 4.3 [G-symmetric extendible]. Let G be a group with unitary representation
{URS (g)}g∈G. A state ρS is G-symmetric extendible if there exists a state ωRS such that

1. the state ωRS is an extension of ρS , i.e.,

TrR[ωRS ] = ρS , (4.5)

2. the state ωRS is G-symmetric, in the sense that

ωRS = URS (g)ωRS URS (g)† ∀g ∈ G. (4.6)

Definition 4.4 [G-Bose symmetric extendible]. A state ρS is G-Bose symmetric ex-
tendible (G-BSE) if there exists a state ωRS such that

1. the state ωRS is an extension of ρS , i.e.,

TrR[ωRS ] = ρS , (4.7)

2. the state ωRS is Bose symmetric, i.e., satisfies

ωRS = ΠG
RSωRS ΠG

RS , (4.8)

where
ΠG

RS B
1
|G|

∑
g∈G

URS (g). (4.9)
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Observe that
ΠG

RS = URS (g)ΠG
RS = ΠG

RS URS (g), (4.10)

for all g ∈ G, which follows from what is called the rearrangement theorem in group theory.

Special cases of the notions of symmetry from Definitions 4.3 and 4.4 are k-
extendibility of bipartite states and G-symmetry of unipartite states, as we discuss
below.

Example 4.1 [k-extendible]. Recall that a bipartite state ρAB is k-extendible [Wer89a,
DPS02, DPS04] if there exists an extension state ωAB1···Bk such that

TrB2···Bk[ωAB1···Bk] = ρAB (4.11)

and
ωAB1···Bk = WB1···Bk(π)ωAB1···BkWB1···Bk(π)†, (4.12)

for all π ∈ S k, where each system B1, . . . , Bk is isomorphic to the system B and WB1···Bk(π)
is a unitary representation of the permutation π ∈ S k, with S k the symmetric group. Then
the established notion of k-extendibility is a special case of G-symmetric extendibility, in
which we set

S = AB1, (4.13)
R = B2 · · · Bk, (4.14)
G = S k, (4.15)

URS (g) = IA ⊗WB1···Bk(π). (4.16)

Example 4.2 [k-Bose-extendible]. A bipartite state ρAB is k-Bose-extendible if there exists
an extension state ωAB1···Bk such that

TrB2···Bk[ωAB1···Bk] = ρAB (4.17)

and
ωAB1···Bk = Π

Sym
B1···Bk

ωAB1···BkΠ
Sym
B1···Bk

, (4.18)

where
Π

Sym
B1···Bk

B
1
k!

∑
π∈S k

WB1···Bk(π) (4.19)

is the projection onto the symmetric subspace. Thus, k-Bose-extendibility is a special case
of G-Bose-symmetric extendibility under the identifications in (4.13)–(4.16).
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Although the concepts of G-symmetric extendibility and G-Bose-symmetric
extendibility, in Definitions 4.3 and 4.4, respectively, are generally different, we
can relate them by purifying a G-symmetric extendible state to a larger Hilbert
space, as stated in Theorem 4.1 below. The ability to do so plays a critical role in
the algorithms proposed in Section 4.2. We give a proof of Theorem 4.1 in Ap-
pendix C.1.

Theorem 4.1. A state ρS is G-symmetric extendible if and only if there exists a purifica-
tion ψρ

RS R̂Ŝ
of ρS satisfying the following:

|ψρ〉RS R̂Ŝ =
(
URS (g) ⊗ U R̂Ŝ (g)

)
|ψρ〉RS R̂Ŝ ∀g ∈ G, (4.20)

where the overbar denotes the entrywise complex conjugate. The condition in (4.20) is
equivalent to

|ψρ〉RS R̂Ŝ = ΠG
RS R̂Ŝ
|ψρ〉RS R̂Ŝ , (4.21)

where
ΠG

RS R̂Ŝ
B

1
|G|

∑
g∈G

URS (g) ⊗ U R̂Ŝ (g). (4.22)

Let us finally introduce two other notions of symmetry, one of which repre-
sents a generalization of a symmetry recently considered in [PRRW24]. Before
doing so, let us first recall that a bipartite state ρAB is separable with respect to the
partition A, B, denoted as ρAB ∈ SEP(A : B), if it can be written in the following form
[Wer89b]:

ρAB =
∑
x∈X

p(x)ψx
A ⊗ φ

x
B, (4.23)

where X is a finite alphabet, {p(x)}x∈X is a probability distribution, and {ψx
A}x∈X and

{φx
B}x∈X are sets of pure states. States that cannot be written in this form are entan-

gled.

Definition 4.5 [G-symmetric separably extendible]. Let G be a group with projective
unitary representation {URS (g)}g∈G, and let ρS be a state. The state ρS is G-symmetric
separably extendible if there exists a state ωRS such that

1. the state ωRS is a separable extension of ρS , i.e.,

TrR[ωRS ] = ρS , (4.24)
ωRS ∈ SEP(R :S ), (4.25)
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2. the state ωRS is G-symmetric, in the sense that

ωRS = URS (g)ωRS URS (g)† ∀g ∈ G. (4.26)

Definition 4.6 [G-Bose-symm. separably extendible]. Let G be a group with unitary rep-
resentation {URS (g)}g∈G, and let ρS be a state. The state ρS is G-Bose-symmetric separably
extendible if there exists a state ωRS such that

1. the state ωRS is a separable extension of ρS , i.e.,

TrR[ωRS ] = ρS , (4.27)
ωRS ∈ SEP(R :S ), (4.28)

2. the state ωRS is Bose symmetric, i.e., satisfies

ωRS = ΠG
RSωRS ΠG

RS , (4.29)

where ΠG
RS is defined in (4.9).

By comparing Definitions 4.3 and 4.4 with Definitions 4.5 and 4.6, respectively,
we see that the main additional constraint in the latter definitions is that the exten-
sion is required to be a separable state. As such, when the state and unitary rep-
resentations are given as matrices, this additional constraint makes the search for
an extension more computationally difficult than those needed for Definitions 4.3
and 4.4, because optimizing over the set of separable states is computationally
difficult [Gur03, Gha10] and it is not possible to perform this search by means
of SDPs [Faw21]. Here, we consider the complexity of testing the symmetry in
Definition 4.6 when the state and unitary representations are given as circuit de-
scriptions.

Let us comment briefly on the connection between Definition 4.6 and the sym-
metry considered in [PRRW24]. In [PRRW24], the goal was to test whether a given
bipartite state ρAB is separable. It was shown that one can equivalently do so by
testing whether there exists a separable extension ρA′AB ∈ SEP(A′ : AB) of ρAB that is
Bose symmetric with respect to the unitary representation {IA′A, FA′A} of the sym-
metric group of order two, where FAA′ is the unitary swap operator. More con-
cretely, the test checks whether there exists ρA′AB ∈ SEP(A′ : AB) such that

TrA′[ρA′AB] = ρAB, (4.30)
ρA′AB = ΠA′AρA′ABΠA′A, (4.31)

where ΠA′A B (IAA′ + FAA′)/2. As such, this represents a non-trivial example of the
symmetry presented in Definition 4.6.
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Test Algorithm Acceptance Probability
G-Bose symmetry 4.1 maxσ∈B-SymG

F(ρ, σ)
G-symmetry 4.2 maxσ∈SymG

F(ρ, σ)
G-Bose symmetric extendibility 4.3 maxσ∈BSEG F(ρ, σ)

G-symmetric extendibility 4.4 maxσ∈SymExtG
F(ρ, σ)

Table 4.1: Summary of the various symmetry tests proposed in Section 4.2 and
their acceptance probabilities. For more details, see Theorems 4.2, 4.3, 4.4, and 4.5.

4.2 Testing symmetry and extendibility on quantum computers

We can use a quantum computer to test for G-symmetric extendibility of a quan-
tum state, as well as for other forms of symmetry discussed in the previous sec-
tion. We assume the following in doing so:

1. there is a quantum circuit available that prepares a purification ψ
ρ
S ′S of the

state ρS ,

2. there is an efficient implementation of each of the unitary operators in the
set {URS (g)}g∈G,

3. and there is an efficient implementation of each of the unitary operators in
the set {URS (g)}g∈G.

The first assumption can be made less restrictive by employing the variational,
purification-learning procedure from [CSZW22]. That is, given a circuit that pre-
pares the state ρS , the variational algorithm from [CSZW22] outputs a circuit that
approximately prepares a purification of ρS . We should note that the convergence
of the algorithm from [CSZW22] has not been established, and so the first assump-
tion might be necessary for some applications. See also [EBS+23].

The last assumption can be relaxed by the following reasoning: a standard
gate set for approximating arbitrary unitaries in quantum computing consists of
the controlled-NOT gate, the Hadamard gate, and the T gate [NC00]. The first two
gates have only real entries while the T gate is a diagonal 2 × 2 unitary gate with
the entries 1 and eiπ/4. The complex conjugate of this gate is equal to T †. Thus, if a
circuit for URS (g) is constructed from this standard gate set, then we can generate
a circuit for URS (g) by replacing every T gate in the original circuit with T †.
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We now consider various quantum computational tests of symmetry that have
increasing complexity. Table 4.1 summarizes the main theoretical insight of this
section, which is that the acceptance probability of each symmetry test can be
expressed in terms of the fidelity of the state being tested to a set of symmetric
states.

To give insight along the way, we provide an example along with the tests
below. In particular, we consider the dihedral group of the triangle, D3, which
has order six and is isomorphic to the symmetric group on three elements, the
smallest non-abelian group. Recall that dihedral groups are the symmetry groups
of regular polygons.

Our example D3 is generated via a flip f and a rotation r: 〈e, f , r | r3 = e, f 2 =

e, f r f = r−1〉. The group thus has six elements {e, f , r, r2, f r, f r2}, where e is the
identity element. We will specify elements r2, f r, f r2 in order to enforce the rules
of the group.

The group table for this dihedral group is given by

Group
element

e f r r2 f r f r2

e e f r r2 f r f r2

f f e f r f r2 r r2

r r f r2 r2 e f f r
r2 r2 f r e r f r2 f
f r f r r2 f r2 f e r
f r2 f r2 r f f r r2 e

To fully realize D3, we use a two-qubit unitary representation and specify the
generators as such: {e → I, f → CNOT, r → CNOT ◦ SWAP}. A quick check con-
firms that these generators obey the commutation rules of the group and generate
the table above. Throughout the next four sections, we substitute this group into
the presented algorithms to demonstrate their construction.

4.2.1 Testing G-Bose symmetry

Let us begin by discussing the simplest version of the problem. Suppose that
the state under consideration is pure, so that we can write it as ψS ≡ |ψ〉〈ψ|S , and
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suppose that the R system is trivial. We recover the traditional case of G-Bose
symmetry mentioned in Definition 4.2. Thus, our goal is to decide if

|ψ〉S = US (g)|ψ〉S ∀g ∈ G. (4.32)

This condition is equivalent to

|ψ〉S = ΠG
S |ψ〉S , (4.33)

where
ΠG

S B
1
|G|

∑
g∈G

US (g), (4.34)

which is in turn equivalent to ∥∥∥ΠG
S |ψ〉S

∥∥∥
2

= 1. (4.35)

The equivalence
|ψ〉S = ΠG

S |ψ〉S ⇔
∥∥∥ΠG

S |ψ〉S
∥∥∥

2
= 1 (4.36)

holds from the Pythagorean theorem and the positive definiteness of the norm.
Indeed, ∥∥∥ΠG

S |ψ〉S
∥∥∥

2
= 1 ⇒

∥∥∥ΠG
S |ψ〉S

∥∥∥2

2
= 1 = ‖|ψ〉S ‖

2
2 (4.37)

and since the Pythagorean theorem states that∥∥∥ΠG
S |ψ〉S

∥∥∥2

2
+

∥∥∥(IS − ΠG
S )|ψ〉S

∥∥∥2

2
= ‖|ψ〉S ‖

2
2 , (4.38)

we conclude that
∥∥∥(IS − ΠG

S )|ψ〉S
∥∥∥

2
= 0, which implies that (IS − ΠG

S )|ψ〉S = 0 from
the positive definiteness of the norm. This in turn is equivalent to the left-hand
side of (4.36). Thus, if we have a method to perform the projection onto ΠG

S , then
we can decide whether (4.35) holds.

There is a simple quantum algorithm to do so. This algorithm was originally
proposed in [Har05, Chapter 8] under the name of “generalized phase estima-
tion.” It proceeds as follows and can be summarized as “performing the quantum
phase estimation algorithm with respect to the unitary representation {US (g)}g∈G”:

Note that the register C has dimension |G|. Also, we can write the state |0〉C
as |e〉C, where e is the identity element of the group. The result of Step 2 of Algo-
rithm 4.1 is to prepare the following uniform superposition state:

|+〉C B
1
√
|G|

∑
g∈G

|g〉C. (4.40)
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Algorithm 4.1 G-Bose symmetry test schematic.

Input: Quantum circuit Uρ that prepares a purification of state ρ and unitary
representation of group G, {U(g)}g∈G.

Output: Estimate of maxσ∈B-SymG
F(ρ, σ).

1: Prepare an ancillary register C in the state |0〉C.
2: Act on register C with a quantum Fourier transform.
3: Append the state |ψ〉S and perform the following controlled unitary:∑

g∈G

|g〉〈g|C ⊗ US (g). (4.39)

4: Perform an inverse quantum Fourier transform on register C, measure in the
basis {|g〉〈g|C}g∈G, and accept if and only if the zero outcome |0〉〈0|C occurs.

|0〉
Uρ

S′

|0〉 U(g)
S

|+〉C • +

Figure 4.1: Quantum circuit to implement Algorithm 4.1. The unitary Uρ prepares
a purification ψS ′S of the state ρS . The final measurement box with the plus-sign
to the right of it indicates that the measurement {|+〉〈+|C, IC − |+〉〈+|C} is performed.
(We use this same notation in several forthcoming figures.) Algorithm 4.1 tests
whether the state ρS is G-Bose symmetric, as defined in Definition 4.2. Its accep-
tance probability is equal to Tr[ΠG

S ρS ], where ΠG
S is defined in (4.34).
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Although the quantum Fourier transform is specified in Algorithm 4.1, in fact, any
unitary that generates the desired superposition state |+〉C can serve as a replace-
ment in Steps 2 and 4 above and oftentimes leads to an improvement in circuit
depth. The same is true for all algorithms that follow.

Moving on, the overall state after Step 3 is as follows:

1
√
|G|

∑
g∈G

|g〉CUS (g)|ψ〉S . (4.41)

The final step of Algorithm 4.1 projects the register C onto the state |+〉C. Accord-
ing to the aforementioned convention, Algorithm 4.1 accepts if the identity ele-
ment outcome |e〉〈e|C occurs. The probability that Algorithm 4.1 accepts is equal
to ∥∥∥∥∥∥∥(〈+|C ⊗ IS )

 1
√
|G|

∑
g∈G

|g〉CUS (g)|ψ〉S


∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥ 1
|G|

∑
g∈G

US (g)|ψ〉S

∥∥∥∥∥∥∥
2

2

(4.42)

=
∥∥∥ΠG

S |ψ〉S
∥∥∥2

2
. (4.43)

Figure 4.1 depicts this quantum algorithm. Not only does it decide whether
the state |ψ〉S is symmetric, but it also quantifies how symmetric the state is. Since
the acceptance probability is equal to

∥∥∥ΠG
S |ψ〉S

∥∥∥2

2
, and this quantity is a measure of

symmetry, we can repeat the algorithm a large number of times to estimate the
acceptance probability to arbitrary precision.

The same quantum algorithm can decide whether a given mixed state ρS is
G-Bose symmetric (see Example 4.2). Similar to the above, it also can estimate
how G-Bose symmetric the state ρS is. To see this, consider that the acceptance
probability for a pure state can be rewritten as follows:∥∥∥ΠG

S |ψ〉S
∥∥∥2

2
= Tr[ΠG

S |ψ〉〈ψ|S ]. (4.44)

Then since every mixed state can be written as a probabilistic mixture of pure
states, it follows that the acceptance probability of Algorithm 4.1, when acting on
the mixed state ρS , is equal to

Tr[ΠG
S ρS ]. (4.45)
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This acceptance probability is equal to one if and only if ρS = ΠG
S ρS ΠG

S , and so this
test is a faithful test of G-Bose symmetry. The equivalence

Tr[ΠG
S ρS ] = 1 ⇔ ρS = ΠG

S ρS ΠG
S (4.46)

follows as a limiting case of the gentle measurement lemma [Win99, ON07] (see
also [Wil17, Lemma 9.4.1]):

1
2

∥∥∥∥∥∥ρS −
ΠG

S ρS ΠG
S

Tr[ΠG
S ρS ]

∥∥∥∥∥∥
1

≤

√
1 − Tr[ΠG

S ρS ] (4.47)

and the positive definiteness of the trace norm. Again, through repetition, we can
estimate the acceptance probability Tr[ΠG

S ρS ] and then employ it as a measure of
G-Bose symmetry.

Interestingly, the acceptance probability of Algorithm 4.1 can be expressed as
the maximum G-Bose-symmetric fidelity, defined for a state ρS as

max
σS ∈B-SymG

F(ρS , σS ), (4.48)

where
B-SymG B

{
σS ∈ D(HS ) : σS = ΠG

SσS ΠG
S

}
, (4.49)

and the fidelity of quantum states ω and τ is defined as [Uhl76]

F(ω, τ) B
∥∥∥√ω√τ∥∥∥2

1
. (4.50)

We state this claim in Theorem 4.2 below and provide a proof of Theorem 4.2 in
Appendix C.2. Thus, Algorithm 4.1 gives an operational meaning to the maxi-
mum G-Bose-symmetric fidelity in terms of its acceptance probability, and it can
be used to estimate this fundamental measure of symmetry.

Theorem 4.2. For a state ρS , the acceptance probability of Algorithm 4.1 is equal to the
maximum G-Bose symmetric fidelity. That is,

Tr[ΠG
S ρS ] = max

σS ∈B-SymG

F(ρS , σS ). (4.51)

Example 4.3. In the example of the dihedral group D3, the |+〉C state is a uniform super-
position of six elements. We use three qubits and the unitary Ud shown in Figure 4.2 to
generate an equal superposition of six elements:

Ud |000〉 =
1
√

6
(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉). (4.52)
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Figure 4.2: Unitary Ud, with θ = 2 arctan
(

1
√

2

)
, generates the equal superposition of

six elements from (4.52). Note that the controlled-Hadamard is controlled on the
qubit being in the state zero.

These control register states need to be mapped to group elements to be meaningful; thus,
we employ the mapping {|000〉 → e, |001〉 → f r2, |010〉 → f r, |011〉 → r, |100〉 →
f , |101〉 → r2} for our circuit constructions. The circuit to test for D3-symmetry is shown
in Figure 4.3.

4.2.2 Testing G-symmetry

We now discuss how to modify Algorithm 4.1 to one that decides whether a state
ρS is G-symmetric (see Definition 4.1), i.e., if

ρS = US (g)ρS US (g)† ∀g ∈ G . (4.53)

We also prove that the acceptance probability of the modified algorithm (Algo-
rithm 4.2 below) is equal to the maximum G-symmetric fidelity, defined as

max
σ∈SymG

F(ρS , σS ), (4.54)

where
SymG B

{
σS ∈ D(HS ) : σS = US (g)σS US (g)† ∀g ∈ G

}
, (4.55)
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Figure 4.3: Quantum circuit implementing Algorithm 4.1 to test G-Bose symmetry
for D3. Compared to Figure 4.1, the systems S and S ′ are two qubits each, C
consists of three qubits, and |+〉C is defined as Ud |000〉.

and D(HS ) denotes the set of density operators acting on the Hilbert space HS .
Thus, Algorithm 4.2 gives an operational meaning to the maximum G-symmetric
fidelity in terms of its acceptance probability, and it can be used to estimate this
fundamental measure of symmetry.

In the modified approach, we suppose that the quantum computer (now called
the verifier) is equipped with access to a “quantum prover”—an agent who can
perform arbitrarily powerful quantum computations. We suppose that the quan-
tum computer is allowed to exchange two quantum messages with the prover.
The resulting class of problems that can be solved using this approach is abbre-
viated QIP(2), for quantum interactive proofs with two quantum messages ex-
changed [Wat09b, VW16], and we note here that computational problems related
to entanglement of bipartite states [HMW14] and recoverability of tripartite states
[CHM+16] were previously shown to be decidable in QIP(2). These latter prob-
lems were proven to be QSZK-hard, and it remains an open question to determine
their precise computational complexity.

Let |ψ〉S ′S be a purification of the state ρS , and suppose that the verifier has
access to a circuit Uρ that prepares this purification of ρS .

Figure 4.4 depicts this quantum algorithm. The overall state after Step 3 of
Algorithm 4.2 is

VS ′E→Ŝ E′ |ψ〉S ′S |0〉E. (4.57)

134



Algorithm 4.2 G-symmetry test schematic.

Input: Quantum circuit Uρ that prepares a purification of state ρ, and unitary
representation of group G, {U(g)}g∈G.

Output: Estimate of maxσ∈SymG
F(ρ, σ).

1: The verifier uses the circuit Uρ to prepare the state |ψ〉S ′S .
2: The verifier transmits the purifying system S ′ to the prover.
3: The prover appends an ancillary register E in the state |0〉E and performs a

unitary VS ′E→Ŝ E′ .
4: The prover sends the system Ŝ back to the verifier.
5: The verifier prepares a register C in the state |0〉C.
6: The verifier acts on register C with a quantum Fourier transform.
7: The verifier performs the following controlled unitary:∑

g∈G

|g〉〈g|C ⊗ US (g) ⊗ U Ŝ (g). (4.56)

8: The verifier performs an inverse quantum Fourier transform on register C,
measures in the basis {|g〉〈g|C}g∈G, and accepts if and only if the zero outcome
|0〉〈0|C occurs.

The result of Step 6 is to prepare the uniform superposition state |+〉C, which is
defined in (4.40). After Step 7, the overall state is

1
√
|G|

∑
g∈G

|g〉C
(
US (g) ⊗ U Ŝ (g)

)
VS ′E→Ŝ E′ |ψ〉S ′S |0〉E. (4.58)

For a fixed unitary VS ′E→Ŝ E′ , the probability of accepting, by following the same
reasoning in (4.42)–(4.43), is equal to∥∥∥ΠG

S Ŝ
VS ′E→Ŝ E′ |ψ〉S ′S |0〉E

∥∥∥2

2
, (4.59)

where
ΠG

S Ŝ
B

1
|G|

∑
g∈G

US (g) ⊗ U Ŝ (g). (4.60)

Since the goal of the prover in a quantum interactive proof is to convince the ver-
ifier to accept [Wat09b, VW16], the prover optimizes over every unitary VS ′E→Ŝ E′

and the acceptance probability of Algorithm 4.2 is given by

max
VS ′E→Ŝ E′

∥∥∥ΠG
S Ŝ

VS ′E→Ŝ E′ |ψ〉S ′S |0〉E
∥∥∥2

2
. (4.61)
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|0〉E
V

E′

|0〉
Uρ

S′
U(g)

Ŝ

|0〉 S
U(g)

|+〉C • +

Figure 4.4: Quantum circuit to implement Algorithm 4.2. The unitary Uρ prepares
a purification ψS ′S of the state ρS . Algorithm 4.2 tests whether the state ρS is G-
symmetric, as defined in Definition 4.1. Its acceptance probability is equal to the
maximum G-symmetric fidelity, as defined in (4.54).

The main idea behind Algorithm 4.2 is that if the state ρS possesses the sym-
metry in (4.53), then Theorem 4.1 (with trivial reference system R) guarantees the
existence of a purification φS Ŝ of ρS such that

|φ〉S Ŝ = ΠG
S Ŝ
|φ〉S Ŝ . (4.62)

Since all purifications of a quantum state are related by a unitary acting on the
purifying system (see, e.g., [Wil17]), the prover is able to apply a unitary taking
the purification |ψ〉S ′S to the purification |φ〉S Ŝ . After the prover sends back the
system Ŝ , the verifier then performs a quantum-computational test to determine
if the condition in (4.62) holds. A discussion on how to choose the size of register
E can be found in Section 4.5.

We now formally state the claim made just after (4.53). See Appendix C.3 for a
proof of Theorem 4.3.

Theorem 4.3. The acceptance probability of Algorithm 4.2 is equal to the maximum G-
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Figure 4.5: Quantum circuit implementing Algorithm 4.2 to test G-symmetry in
the case that the group G is the triangular dihedral group. Compared to Figure 4.4,
the systems S and S ′ are two qubits each, C consists of three qubits, and |+〉C is
defined as Ud |000〉. Both the SWAP and CNOT gates have no imaginary entries,
and thus they are equal to their own complex conjugates.

symmetric fidelity in (4.54), i.e.,

max
VS ′E→Ŝ E′

∥∥∥ΠG
S Ŝ

VS ′E→Ŝ E′ |ψ〉S ′S |0〉E
∥∥∥2

2
= max

σS ∈SymG

F(ρS , σS ). (4.63)

Example 4.4. For the triangular dihedral group example (see Example 4.3), we use the
same unitary Ud as in (4.52) to prepare the superposition |+〉C and the same mapping of
control states to group elements. The circuit to test for G-symmetry is shown in Figure 4.5.

Remark 4.1 [Testing incoherence]. We note here that testing the incoherence of a quan-
tum state, in the sense of [BCP14, SAP17], is a special case of testing G-symmetry. To
see this, we can pick G to be the cyclic group over d elements with unitary representation
{Z(z)}z, where Z(z) is the generalized Pauli phase-shift unitary, defined as

Z(z) B
d−1∑
j=0

e2πi jz/d| j〉〈 j|. (4.64)

A state is symmetric with respect to this group if the condition in (4.53) holds. This
condition is equivalent to the following one:

ρS =
1
|G|

∑
g∈G

US (g)ρS US (g)†. (4.65)
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For the choice mentioned above, the condition in (4.65) holds if and only if the state ρS is
diagonal in the incoherent basis, i.e., if it can be written as ρS =

∑
j p( j)| j〉〈 j|, where p( j)

is a probability distribution. Thus, Algorithm 4.2 can be used to test the incoherence of
quantum states.

4.2.3 Testing G-Bose symmetric extendibility

We now describe an algorithm for testing G-Bose symmetric extendibility of a
quantum state ρS , as defined in Definition 4.4. The algorithm bears some similar-
ities with Algorithms 4.1 and 4.2. Like Algorithm 4.2, it involves an interaction
between a verifier and a prover. We prove that its acceptance probability is equal
to the maximum G-BSE fidelity:

max
σS ∈BSEG

F(ρS , σS ), (4.66)

where BSEG is the set of G-Bose symmetric extendible states:

BSEG B

{
σS : ∃ ωRS ∈ D(HRS ),TrR[ωRS ] = σS ,

ωRS = URS (g)ωRS , ∀g ∈ G

}
. (4.67)

Thus, the algorithm endows the maximum G-BSE fidelity with an operational
meaning. Note that the condition ωRS = URS (g)ωRS for all g ∈ G is equivalent
to

ωRS = ΠG
RSωRS ΠG

RS , (4.68)

where
ΠG

RS B
1
|G|

∑
g∈G

URS (g). (4.69)

The algorithm is similar to Algorithm 4.2, but we list it here for completeness.
Let |ψ〉S ′S be a purification of the state ρS , and suppose that the circuit Uρ prepares
this purification of ρS .

Figure 4.6 depicts this quantum algorithm. The overall state after Step 3 is

VS ′E→RE′ |ψ〉S ′S |0〉E. (4.71)

Step 6 prepares the uniform superposition state |+〉C, which is defined in (4.40).
After Step 7, the overall state is

1
√
|G|

∑
g∈G

|g〉CURS (g)VS ′E→RE′ |ψ〉S ′S |0〉E. (4.72)
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Algorithm 4.3 G-BSE test schematic.

Input: Quantum circuit Uρ that prepares a purification of state ρ, and unitary
representation of group G, {U(g)}g∈G.

Output: Estimate of maxσS ∈BSEG F(ρS , σS ).

1: The verifier uses the circuit provided to prepare the state |ψ〉S ′S .
2: The verifier transmits the purifying system S ′ to the prover.
3: The prover appends an ancillary register E in the state |0〉E and performs a

unitary VS ′E→RE′ .
4: The prover sends the system R back to the verifier.
5: The verifier prepares a register C in the state |0〉C.
6: The verifier acts on register C with a quantum Fourier transform.
7: The verifier performs the following controlled unitary:∑

g∈G

|g〉〈g|C ⊗ URS (g), (4.70)

8: The verifier performs an inverse quantum Fourier transform on register C,
measures in the basis {|g〉〈g|C}g∈G, and accepts if and only if the zero outcome
|0〉〈0|C occurs.

The last step can be understood as the verifier projecting the register C onto the
state |+〉C.

The probability of accepting, following the same reasoning as before, is equal
to ∥∥∥ΠG

RS VS ′E→RE′ |ψ〉S ′S |0〉E
∥∥∥2

2
, (4.73)

where ΠG
RS is defined in (4.69). As before, the goal of the prover in a quantum

interactive proof is to convince the verifier to accept [Wat09b, VW16], and so the
prover optimizes over every unitary VS ′E→Ŝ E′ . The acceptance probability of Algo-
rithm 4.3 is then given by

max
VS ′E→RE′

∥∥∥ΠG
RS VS ′E→RE′ |ψ〉S ′S |0〉E

∥∥∥2

2
. (4.74)

Our proof of the following theorem is similar to the proof given for Theo-
rem 4.3; for completeness, we provide a proof in Appendix C.4.

Theorem 4.4. The maximum acceptance probability of Algorithm 4.3 is equal to the
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Figure 4.6: Quantum circuit to implement Algorithm 4.3. The unitary Uρ prepares
a purification ψS ′S of the state ρS . Algorithm 4.3 tests whether the state ρS is G-
Bose symmetric extendible, as defined in Definition 4.4. Its acceptance probability
is equal to the maximum G-BSE fidelity, as defined in (4.66).

maximum G-BSE fidelity in (4.66), i.e.,

max
VS ′E→RE′

∥∥∥ΠG
RS VS ′E→RE′ |ψ〉S ′S |0〉E

∥∥∥2

2
= max

σS ∈BSEG
F(ρS , σS ), (4.75)

where the set BSEG is defined in (4.67).

Example 4.5. For the triangular dihedral group example (see Example 4.3), we use the
same unitary Ud to prepare the superposition |+〉C and the same mapping of control states
to group elements. The circuit to test for G-Bose symmetric extendibility is shown in
Figure 4.7.

4.2.4 Testing G-symmetric extendibility

The final algorithm that we introduce tests whether a state ρS is G-symmetric ex-
tendible (recall Definition 4.3). Similar to the algorithms in the previous sections,
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Figure 4.7: Quantum circuit implementing Algorithm 4.3 to test G-Bose symmet-
ric extendibility for the triangular dihedral group. Compared to Figure 4.6, the
systems S and S ′ are one qubit each, C consists of three qubits, and |+〉C is defined
as Ud |000〉.

not only does it decide whether ρS is G-symmetric extendible, but it also quan-
tifies how similar it is to a state in the set of G-symmetric extendible states. The
acceptance probability is equal to the maximum G-symmetric extendible fidelity:

max
σS ∈SymExtG

F(ρS , σS ), (4.76)

where

SymExtG B
{
σS : ∃ ωRS ∈ D(HRS ),TrR[ωRS ] = σS ,
ωRS = URS (g)ωRS URS (g)† ∀g ∈ G

}
. (4.77)

We again operate in the model of quantum interactive proofs, in which a verifier
interacts with a prover.

We list the algorithm below for completeness, noting its similarity to the pre-
vious algorithms. Let |ψ〉S ′S be a purification of the state ρS , and suppose that the
circuit Uρ prepares this purification of ρS .

Figure 4.8 depicts this quantum algorithm. After Step 3, the overall state is

VS ′E→RR̂Ŝ E′ |ψ〉S ′S |0〉E. (4.79)

Step 5 prepares the uniform superposition state |+〉C, which is defined in (4.40).
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Algorithm 4.4 G-SE test schematic.

Input: Quantum circuit Uρ that prepares a purification of state ρ, and unitary
representation of group G, {U(g)}g∈G.

Output: Estimate of maxσS ∈SymExtG F(ρS , σS ).

1: The verifier uses the circuit Uρ to prepare the state |ψ〉S ′S , which is a purifica-
tion of the state ρS .

2: The verifier transmits the purifying system S ′ to the prover.
3: The prover appends an ancillary register E in the state |0〉E and performs a

unitary VS ′E→RR̂Ŝ E′ .
4: The prover sends the systems RR̂Ŝ back to the verifier.
5: The verifier prepares a register C in the state |0〉C.
6: The verifier acts on register C with a quantum Fourier transform.
7: The verifier performs the following controlled unitary:∑

g∈G

|g〉〈g|C ⊗ URS (g) ⊗ U R̂Ŝ (g), (4.78)

8: The verifier performs an inverse quantum Fourier transform on register C,
measures in the basis {|g〉〈g|C}g∈G, and accepts if and only if the zero outcome
|0〉〈0|C occurs.

After Step 7, the overall state is

1
√
|G|

∑
g∈G

|g〉C
(
URS (g) ⊗ U R̂Ŝ (g)

)
V |ψ〉S ′S |0〉E, (4.80)

where V ≡ VS ′E→RR̂Ŝ E′ . The last step can be understood as the verifier projecting
the register C onto the state |+〉C.

The probability of accepting is equal to∥∥∥ΠG
RS R̂Ŝ

VS ′E→RR̂Ŝ E′ |ψ〉S ′S |0〉E
∥∥∥2

2
, (4.81)

where ΠG
RS R̂Ŝ

is defined in (4.22). As before, the prover optimizes over every uni-
tary VS ′E→RR̂Ŝ E′ . The acceptance probability of Algorithm 4.4 is then given by∥∥∥ΠG

RS R̂Ŝ
VS ′E→RR̂Ŝ E′ |ψ〉S ′S |0〉E

∥∥∥2

2
. (4.82)

Our proof of the following theorem is similar to the proof given for Theo-
rem 4.3. For completeness, we provide our proof in Appendix C.5.

142



V

E′

|0〉E
U(g)

R̂

Ŝ
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Figure 4.8: Quantum circuit to implement Algorithm 4.4. The unitary Uρ prepares
a purification ψS ′S of the state ρS . Algorithm 4.4 tests whether the state ρS is G-
symmetric extendible, as defined in Definition 4.3. Its acceptance probability is
equal to the maximum G-symmetric extendible fidelity, as defined in (4.76).

Theorem 4.5. The maximum acceptance probability of Algorithm 4.4 is equal to the
maximum G-symmetric extendible fidelity in (4.76), i.e.,

max
VS ′E→RR̂Ŝ E′

∥∥∥ΠG
RS R̂Ŝ

VS ′E→RR̂Ŝ E′ |ψ〉S ′S |0〉E
∥∥∥2

2
= max

σS ∈SymExtG
F(ρS , σS ), (4.83)

where the set SymExtG is defined in (4.77).

Example 4.6. For the triangular dihedral group example (see Example 4.3), we use the
same unitary Ud to prepare the superposition |+〉C and the same mapping of control states
to group elements. The circuit to test for G-symmetric extendibility is shown in Figure 4.9.

Remark 4.2 [Extensions to compact groups]. Throughout our paper we have focused on

143



Figure 4.9: Quantum circuit implementing Algorithm 4.4 to test G-symmetric ex-
tendibility in the case that the group G is the triangular dihedral group. Compared
to Figure 4.8, the systems S and S ′ are one qubit each, C consists of three qubits,
and |+〉C is defined as Ud |000〉. Both the SWAP and CNOT gates have no imaginary
entries and thus are equal to their own complex conjugates.

discrete, finite groups; however, these notions of symmetry and the algorithms presented
above in principle may be extended to continuous groups as well, permitting certain condi-
tions hold. We leave a detailed investigation of this topic for future work and only discuss
this extension briefly here. In particular, our algorithms can be generalized to any compact
Lie group represented on a finite-dimensional quantum system. The primary limitation in
cases of compact groups is realizing the following projection [Har13]

ΠG B

∫
g∈G

dµ(g) U(g) , (4.84)

where U(g) is the unitary representation of g and µ(g) is the Haar measure for the
group. It follows from Caratheodory’s theorem that there exists a probability mass function
{p(g)}g∈G′ , where G′ is a finite set, such that the following equality holds:

ΠG =
∑
g∈G′

p(g)U(g). (4.85)

As such, since our algorithms ultimately realize this projection for the case in which p(g)
is uniform, they can be generalized in the following way. For concreteness, we consider
the following generalization of Algorithm 4.1, but we note that our other algorithms can
be generalized similarly:
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1. Prepare an ancillary register C in the state

|ϕp〉C B
∑
g∈G′

√
p(g)|g〉. (4.86)

2. Append the state |ψ〉S and perform the following controlled unitary:∑
g∈G′
|g〉〈g|C ⊗ US (g). (4.87)

3. Perform the measurement {|ϕp〉〈ϕp|C, IC − |ϕp〉〈ϕp|C} on the register C, and accept if
and only if the outcome |ϕp〉〈ϕp|C occurs.

Following similar calculations given in (4.40)–(4.44), we conclude that the acceptance
probability of this algorithm is equal to Tr[ΠG|ψ〉〈ψ|S ].

Although this abstract presentation of the generalized algorithm seems straightfor-
ward, there are some key questions to address before realizing it in practice. What is the
probability mass function {p(g)}g∈G′ that results from applying Caratheodory’s theorem?
This theorem only guarantees the existence of such a probability mass function, but it
does not construct it. Once the probability mass function is known, is the state |ϕp〉C ef-
ficiently preparable? Addressing these two questions would lead to an efficient algorithm
for estimating Tr[ΠG|ψ〉〈ψ|S ].

When the group representation permits a t-design [RS09], then it is straightforward
to realize the algorithm, and we consider some examples in Sections 4.5.3 and 4.5.4. In
general, addressing these questions may not be trivial; the topic of t-designs is addressed
in a large body of work [Sco08, RS09, GAE07] beyond the scope considered here.

4.3 Tests of k-extendibility of states

The theory developed in Section 4.2 is rather general. In the forthcoming subsec-
tions, we apply it to test for extendibility of bipartite and multipartite quantum
states and to test for covariance symmetry of quantum channels and measure-
ments. Later on in Section 4.5, we consider many other example of groups and
symmetry tests and simulate the performance of Algorithms 4.1–4.4.
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4.3.1 Separability test for pure bipartite states

We illustrate the G-Bose symmetry test from Section 4.2.1 on a case of interest:
deciding whether a pure bipartite state is entangled. This problem is known
to be BQP-complete [GHMW15], and one can decide it by means of the SWAP
test as considered in [HM10]. The SWAP test as a quantum computational
method of quantifying entanglement has been further studied in recent work
[FKS21, BGCC21].

Let ψAB be a pure bipartite state, and let ψ⊗k
AB denote k copies of it. Then we can

consider the permutation unitaries WB1···Bk(π) from Example 4.1. This example is a
special case of G-Bose symmetry with the identifications

S ↔ A1B1 · · · AkBk, (4.88)
US (g)↔ IA1···Ak ⊗WB1···Bk(π). (4.89)

The acceptance probability of Algorithm 4.1 is equal to

Tr[ΠSym
B1···Bk

ρ⊗k
B ], (4.90)

where the projection Π
Sym
B1···Bk

onto the symmetric subspace is defined in (4.19) and
ρB B TrA[ψAB]. We note that there is an efficient quantum algorithm to implement
this test [BBD+97, Section 4], which amounts to an instance of the abstract formu-
lation in Algorithm 4.1. For k = 2, this reduces to the well-known SWAP test with
acceptance probability

p(2)
acc B

1
2

(
1 + Tr[ρ2

B]
)
. (4.91)

For k = 3, the acceptance probability is

p(3)
acc B

1
6

(
1 + 3 Tr[ρ2

B] + 2 Tr[ρ3
B]

)
. (4.92)

For k = 4, the acceptance probability is

p(4)
acc B

1
24

(
1 + 6 Tr[ρ2

B] + 3
(
Tr[ρ2

B]
)2

+ 8 Tr[ρ3
B] + 6 Tr[ρ4

B]
)
. (4.93)

We conclude that
p(2)

acc ≥ p(3)
acc ≥ p(4)

acc, (4.94)
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because Tr[ρk] =
∑

j λ
k
j, where the eigenvalues of ρ are {λ j} j, and for all x, y ∈ [0, 1],

1
2

(
x + x2

)
≥

1
6

(
x + 3x2 + 2x3

)
(4.95)

≥
1
24

(
x + 6x2 + 3x2y + 8x3 + 6x4

)
. (4.96)

The inequalities in (4.94) imply that the tests become more difficult to pass as k
increases. In a previous version of our paper [LW21], we speculated that this
trend of decreasing acceptance probability continues as k increases. Indeed, this
was subsequently shown to be true in [BLW23].

We can interpret these findings in two different ways. For each k, the rejec-
tion probability 1 − p(k)

acc can be understood as an entanglement measure for pure
states, similar to how the linear entropy 1−Tr[ρ2

B] is interpreted as an entanglement
measure [HHHH09]. Indeed, these quantities are non-increasing under local op-
erations and classical communication that take pure states to pure states, as every
Rényi entropy (defined as 1

1−α log Tr[ραB] for α ∈ (0, 1) ∪ (1,∞)) is an entanglement
measure for pure states. Another interpretation is that, if using these tests to de-
cide if a given pure state is product or entangled, a decision can be determined
with fewer repetitions of the basic test by using tests with higher values of k.

4.3.2 Separability test for pure multipartite states

We can generalize the test from the previous section to one for pure multipar-
tite entanglement. Let ψA1···Am be a multipartite pure state, and let ψ⊗k

A1···Am
denote

k copies of it. For i ∈ {1, . . . ,m} and πi ∈ S k, let WAi,1···Ai,k(πi) denote a permutation
unitary, where i is an index for the ith party, and the notation Ai, j for j ∈ {1, . . . , k}
indicates the jth system of the ith party. This example is a special case of G-Bose
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symmetry with the identifications:

S ↔ A1,1 · · · A1,k · · · Am,1 · · · Am,k, (4.97)

US (g)↔
m⊗

i=1

WAi,1···Ai,k(πi), (4.98)

G ↔
m times︷          ︸︸          ︷

S k × · · · × S k, (4.99)
g↔ (π1, . . . , πm), (4.100)

where × denotes the direct product of groups. The G-Bose symmetry test from
Section 4.2.1 has the following acceptance probability in this case:

Tr

 m⊗
i=1

Π
Sym
Ai,1···Ai,k

ψ⊗k
A1···Am

 . (4.101)

Note that one can again use the circuit from [BBD+97, Section 4] to implement this
test. For k = 2, this test is known to be a test of multipartite pure-state entangle-
ment [HM10], which has been considered in more recent works [FKS21,BGCC21].
As far as we aware, the test proposed above, for larger values of k, has not been
considered previously. Presumably, as was the case for the bipartite entanglement
test mentioned above, the multipartite test is such that it becomes easier to detect
an entangled state as k increases. We leave its detailed analysis for future work.

4.3.3 k-Bose extendibility test for bipartite states

We now demonstrate how the test for G-Bose symmetric extendibility from Sec-
tion 4.2.3 can realize a test for k-Bose extendibility of a bipartite state. Since every
separable state is k-Bose extendible, this test is then indirectly a test for separa-
bility. To see this in detail, recall that a bipartite state σAB is separable if it can be
written as a convex combination of pure product states [HHHH09, KW20]:

σAB =
∑

x

pX(x)ψx
A ⊗ φ

x
B, (4.102)

where pX is a probability distribution and {ψx
A}x and {φx

B}x are sets of pure states. A
k-Bose extension for this state is as follows:

ωAB1···Bk =
∑

x

pX(x)ψx
A ⊗ φ

x
B1
⊗ · · · ⊗ φx

Bk
. (4.103)
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By making the identifications discussed in Example 4.2, it follows from Theo-
rem 4.4 that the test from Section 4.2.3 is a test for k-Bose extendibility. For an
input state ρAB, the acceptance probability of Algorithm 4.3 is equal to the maxi-
mum k-Bose extendible fidelity

max
ωAB∈k-BE

F(ρAB, ωAB), (4.104)

where k-BE denotes the set of k-Bose extendible states, as defined in Example 4.2.

This test for k-Bose extendibility was proposed in [HMW14] for understanding
the computational complexity of the circuit separability problem. In that work, it
was not mentioned that the test employed is a test for k-Bose extendibility; in-
stead, it was suggested to be a test for k-extendibility. Thus, our observation here
(also made earlier by [Mar13]) is that the test proposed in [HMW14] is actually
a test for k-Bose extendibility, and we consider in the next section a true test for
k-extendibility. The main results of [HMW14] were the computational complexity
of the circuit version of the separability problem, and so the precise kind of test
used was not particularly important there.

4.3.4 k-Extendibility test for bipartite states

In this section, we discuss how the test for G-symmetric extendibility
from Section 4.2.4 can realize a test for k-extendibility of a bipartite state.
Due to the known connections between k-extendibility and separability
[CKMR07, BCY11a, BCY11b, BH13], this test is an indirect test for separability of
a bipartite state. Since every separable state is k-Bose extendible, as discussed
in Section 4.3.3, and every k-Bose extendible state is k-extendible, it follows that
every separable state is k-extendible.

By making the identifications discussed in Example 4.1, it follows from The-
orem 4.5 that the test from Section 4.2.4 is a test for k-extendibility. For an input
state ρAB, the acceptance probability of Algorithm 4.4 is equal to the maximum
k-extendible fidelity

max
ωAB∈k-E

F(ρAB, ωAB), (4.105)

where k-E denotes the set of k-extendible states, as defined in Example 4.1.

As far as we are aware, this quantum computational test for k-extendibility is
original to this paper, however inspired by the approach from [HMW14]. It was
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argued in [HMW14] that the acceptance probability of the test there is bounded
from above by the maximum k-extendible fidelity, which is consistent with the fact
that the set of k-Bose extendible states is contained in the set of k-extendible states
and our observation here that the acceptance probability of the test in [HMW14]
is equal to the maximum k-Bose extendible fidelity.

4.3.5 Extendibility tests for multipartite states

We discuss briefly how the tests from Sections 4.2.3 and 4.2.4 apply to the multi-
partite case, using identifications similar to those in (4.97)–(4.100).

First, let us recall the definition of multipartite extendibility [DPS05]. Let
σA1···Am be a multipartite state. Such a state is (k1, . . . , km)-extendible if there exists a
state ωA1,1···A1,k1 ···Am,1···Am,km

such that

σA1···Am = TrA1,2···A1,k1 ···Am,2···Am,km
[ωA1,1···A1,k1 ···Am,1···Am,km

] (4.106)

and

ωA1,1···A1,k1 ···Am,1···Am,km
=

Wπ
A1,1 ···A1,k1

···Am,1 ···Am,km
ωA1,1···A1,k1 ···Am,1···Am,km

× (Wπ
A1,1 ···A1,k1

···Am,1 ···Am,km
)†, (4.107)

for all π, where π = (π1, . . . , πm) ∈ S k1 × · · · × S km and

Wπ
A1,1 ···A1,k1

···Am,1 ···Am,km
B

m⊗
i=1

Wπi
Ai,1···Ai,ki

. (4.108)

A multipartite state is (k1, . . . , km)-Bose extendible if there exists a state
ωA1,1···A1,k1 ···Am,1···Am,km

such that (4.106) holds and

ωA1,1···A1,k1 ···Am,1···Am,km
=

ΠA1,1···A1,k1 ···Am,1···Am,km
ωA1,1···A1,k1 ···Am,1···Am,km

ΠA1,1···A1,k1 ···Am,1···Am,km
, (4.109)

where

ΠA1,1···A1,k1 ···Am,1···Am,km
B

m⊗
i=1

Π
Sym
Ai,1···Ai,ki

, (4.110)

Π
Sym
Ai,1···Ai,ki

B
1

ki!

∑
πi∈S ki

Wπi
Ai,1···Ai,ki

. (4.111)

150



By making the identifications

S ↔ A1,1 · · · Am,1, (4.112)
R↔ A1,2 · · · A1,k1 · · · Am,2 · · · Am,km , (4.113)

URS (g)↔
m⊗

i=1

WAi,1···Ai,ki
(πi), (4.114)

G ↔ S k1 × · · · × S km , (4.115)
g↔ (π1, . . . , πm), (4.116)

it follows that Algorithm 4.3 is a test for multipartite (k1, . . . , km)-Bose extendibility
of a state ρA1···Am , with acceptance probability equal to

max
ωA1 ···Am∈(k1,...,km)-BE

F(ρA1···Am , ωA1···Am), (4.117)

and Algorithm 4.4 is a test for multipartite (k1, . . . , km)-extendibility of a state
ρA1···Am , with acceptance probability equal to

max
ωA1 ···Am∈(k1,...,km)-E

F(ρA1···Am , ωA1···Am), (4.118)

where (k1, . . . , km)-BE and (k1, . . . , km)-E denote the sets of (k1, . . . , km)-Bose ex-
tendible and (k1, . . . , km)-extendible states, respectively.

4.4 Semi-definite programs for maximum symmetric fidelities

In this section, we note that the acceptance probabilities of Algorithms 4.1–4.4 can
be computed by means of semi-definite programming (see [BV04, Wat18, KW20]
for reviews). This is useful for comparing the true values of the acceptance proba-
bilities of Algorithms 4.1–4.4 to estimates formed from executing them on near-
term quantum computers; however, this semi-definite programming approach
only works well in practice if the circuit Uρ acts on a small number of qubits. This
limitation holds because the semi-definite programs (SDPs) run in a time polyno-
mial in the dimension of the states involved, but the dimension of a state grows
exponentially with the number of qubits involved.

We note that the fact that the acceptance probabilities of Algorithms 4.1–4.4 can
be computed by semi-definite programming follows from a more general fact that

151



the acceptance probability of a QIP(2) algorithm can be computed in this man-
ner [Wat09b, VW16]; however, it is helpful to have the explicit form of the SDPs
available.

We now list the SDPs for the acceptance probabilities of Algorithms 4.1–4.4. To
begin with, let us note that the acceptance probability of Algorithm 4.1 is equal
to Tr[ΠG

S ρS ], and so there is no need for an optimization. This quantity can be
calculated directly if the projection matrix ΠG

S and the density matrix ρS are avail-
able. Alternatively, one could employ an optimization as given below. Let us first
note that the root fidelity of states ω and τ can be calculated by the following SDP
[Wat13]:

√
F(ω, τ) = max

X∈L(H)

{
Tr[Re[X]] :

[
ω X†

X τ

]
≥ 0

}
, (4.119)

where L(H) is the space of linear operators acting on the Hilbert space H . Each
of the sets B-SymG, SymG, BSEG, and SymExtG are specified by semi-definite con-
straints. Thus, combining the optimization in (4.119) with various constraints, we
find that the acceptance probabilities of Algorithms 4.1–4.4 can be calculated by
using the following SDPs, respectively:

max
σS ∈B-SymG

√
F(ρS , σS ) = max

X∈L(HS ),
σS≥0


Tr[Re[X]] :[
ρS X†

X σS

]
≥ 0,

Tr[σS ] = 1,
σS = ΠG

SσS ΠG
S


, (4.120)

max
σS ∈SymG

√
F(ρS , σS ) = max

X∈L(HS ),
σS≥0


Tr[Re[X]] :[
ρS X†

X σS

]
≥ 0,

Tr[σS ] = 1,
σS = US (g)σS US (g)† ∀g ∈ G


, (4.121)

max
σS ∈BSEG

√
F(ρS , σS ) = max

X∈L(HS ),
ωRS≥0


Tr[Re[X]] :[

ρS X†

X TrR[ωRS ]

]
≥ 0,

Tr[ωRS ] = 1,
ωRS = ΠG

RSωRS ΠG
RS


, (4.122)
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max
σS ∈SymExtG

√
F(ρS , σS ) = max

X∈L(HS ),
ωRS≥0


Tr[Re[X]] :[

ρS X†

X TrR[ωRS ]

]
≥ 0,

Tr[ωRS ] = 1,
ωRS = URS (g)ωRS URS (g)† ∀g ∈ G


. (4.123)

We note here that the complexity of the SDPs in (4.121) and (4.123) can be
greatly simplified by employing basic concepts from representation theory (i.e.,
Schur’s lemma). See [Ste12] for background on representation theory and Propo-
sitions 4.2.2 and 4.2.3 therein for Schur’s lemma. Focusing on the SDP in (4.121), it
is well known that there exists a unitary W that block diagonalizes every unitary
in the set {U(g)}g∈G, as follows:

U(g) = W

⊕
λ

Imλ
⊗ Uλ(g)

 W†, (4.124)

where the variable λ labels an irreducible representation (irrep) of U(g), the matrix
Imλ

is an identity matrix of dimension mλ, and the unitary Uλ(g) is an irrep of U(g)
with multiplicity mλ. This same unitary W induces a direct-sum decomposition
(called isotypic decomposition) of the Hilbert spaceH for ρS and σS as follows:

W†H =
⊕
λ

Hλ, (4.125)

Hλ B C
mλ ⊗ Kλ, (4.126)

whereHλ is the space on which Imλ
⊗Uλ(g) acts andKλ is the factor on which Uλ(g)

acts. Noting that the condition

σS = US (g)σS US (g)† ∀g ∈ G (4.127)

is equivalent to
σS = TG(σS ), (4.128)

where the group twirl channel is defined as

TG(·) B
1
|G|

∑
g∈G

US (g)(·)US (g)†, (4.129)

it then follows from (4.124) and Schur’s lemma that the twirl channel TG has the
following form (see page 8 of [BRS07]):

TG(·) =W◦

∑
λ

(idmλ
⊗Dλ) ◦ Pλ

 ◦W†, (4.130)
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whereW(·) B W(·)W†, the map Pλ projects onto Hλ (i.e., Pλ(·) B Πλ(·)Πλ, with Πλ

the projection onto Hλ), the map idmλ
denotes the identity channel acting on the

multiplicity space, and Dλ denotes a completely depolarizing channel with the
action Dλ(·) B Tr[·]πλ, with πλ B Idλ/dλ and dλ the dimension of Kλ. The effect of
the twirl TG on a general input σ is then

TG(σ) = W

⊕
λ

Tr2[ΠλW†σWΠλ] ⊗ πλ

 W†. (4.131)

It then follows that every state satisfying (4.128) has the following form:

σS = W

⊕
λ

σ̃λ ⊗ πλ

 W†, (4.132)

where {σ̃λ}λ is a set of positive semi-definite operators such that
∑
λ Tr[σ̃λ] = 1.

Thus, when performing the optimization in (4.121), it suffices to find the diag-
onalizing unitary W for the representation {U(g)}g∈G (for which an algorithm is
known [AL12, Section 9.2.5]) and then optimize over the set {σ̃λ}λ, thus greatly
reducing the space over which the optimization needs to be conducted. This kind
of reduction was recently exploited in [FST22], and a Matlab toolbox was pro-
vided in [RMMB21]. We note that we can employ similar reasoning to simplify
the optimization in (4.123).

It also follows from Schur’s lemma that the group projection ΠG
S has the fol-

lowing form [Cub18, Eqs. (1)–(2)]:

ΠG
S = W

⊕
λ

δλ,λtImλ
⊗ Idλ

 W†, (4.133)

= WΠλtW
†, (4.134)

where λt is the irrep for the trivial representation of {US (g)}g∈G. Noting that dλt = 1
for this irrep, it follows that Πλt acts as Imλ

on this subspace. Thus, in the opti-
mization in (4.120), it follows that every state σS satisfying σS = ΠG

SσS ΠG
S has the

following form:
WσλtW

†, (4.135)

where σλt is a state with support only in the space Hλt , i.e., satisfying σλt =

ΠλtσλtΠλt . In this way, we can simplify the optimization task in (4.120). We fi-
nally note that we can employ similar reasoning to simplify the optimization in
(4.123).
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4.5 Variational algorithms for testing symmetry

Having established that the acceptance probabilities can be computed by SDPs
for circuits on a sufficiently small number of qubits, we now propose variational
quantum algorithms (VQA) for use on quantum computers as a proof-of-concept
implementation of these tests (see [CAB+21, BCLK+22] for reviews of variational
quantum algorithms). These algorithms make use of variational machine learn-
ing techniques to mimic the action of the prover in Algorithms 4.2–4.4; however,
these techniques are in general limited in terms of their capabilities and thus do
not fully satisfy the all-powerful nature of the prover called for in quantum in-
teractive proofs. Note also that training a VQA has been shown to be NP-hard
[BK21]; nonetheless, implementing such methods on near-term quantum devices
gives a rough lower bound on the symmetry measures of interest. In the future,
more advanced techniques could be substituted into the prover’s position in an
equivalent manner to improve on these lower-bound estimates. We present here a
series of examples and show the circuit diagrams and VQA performance for these
tests. To demonstrate the wide-ranging applicability of these algorithms, we have
performed symmetry tests for a variety of groups.

For the algorithms discussed in this section, all code was implemented in
Python using Qiskit (a Python package used for quantum computing with IBM
Quantum). For each algorithm, the noiseless variant was implemented using the
IBM Quantum noiseless simulator. For the noisy versions, we use the noise model
from the IBM-Jakarta quantum computer and conduct a noisy simulation. We find
that the algorithms behave well in both scenarios, and for VQA tests, our results
converge in a reasonable number of layers, typically less than five. In the noisy
simulations, the algorithms converge well, and the parameters obtained exhibit
a noise resilience as put forward in [SKCC20]; that is, the relevant quantity can
be accurately estimated by inputting the parameters learned from the noisy sim-
ulator into the noiseless simulator. Note that some sections show only a noiseless
simulation; for these cases, the noisy simulation requires a noise model of a larger
quantum system than is currently available to us.

As with many VQAs, it is necessary in these simulations to endeavor to avoid
the barren plateau problem, in which global cost functions become untrainable.
The algorithms specified in Section 4.2 rely solely on local measurements alone in
the regime in which the number of data qubits is much larger than the number of
control qubits and thus should not suffer from this issue in this regime [CSV+213].
Furthermore, all VQAs utilized herein employ the SPSA optimization technique
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Figure 4.10: Symmetry tests for the Z2 group: a) G-Bose symmetry and b) G-
symmetry.

discussed in [Spa98], which aims to prevent local minima problems. Indeed, our
simulations did not run into either issue for any of the results discussed. However,
we have only considered simulations of small quantum systems; it remains open
to provide evidence that our algorithms will avoid the barren plateau problem for
larger systems.

Lastly, consider that many of the algorithms in Section 4.2 allow the prover
access to an environmental system, labelled E. A natural question is how best to
choose the dimension of this system. In general, we find that the E system must
be sufficiently large so as to match the input and output qubits, making the entire
process unitary. For example, in G-symmetry tests, the dimension of the E system
must be sufficiently large to provide a purification of the test state (recall Fig-
ure 4.4); for instance, if the state under test is a two-qubit state with a three-qubit
purification, then E must necessarily provide the remaining qubit to get from the
initial three-qubit purification to the four-qubit purification being tested. By con-
struction, the purification of a state under test is always provided to the prover
and is not considered part of the environmental system. For all simulations, we
have taken the dimension of E to be the minimal viable dimension.

In what follows, we consider several groups and their unitary representations
and test states for G-Bose symmetry, G-symmetry, G-Bose symmetric extendibility,
and G-symmetric extendibility. We also test for two- and three-extendibility.
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4.5.1 Z2 Group

In order to test membership in SymG, a group with an established unitary repre-
sentation is needed. One somewhat trivial, albeit easily testable, example is the
group generated by the identity and the Pauli Z gate. The group table for the Z2

group is given by

Group
element

e g

e e g
g g e

where e denotes the identity element. The Z2 group has a simple one-qubit unitary
representation {e→ I, g→ Z}. Since Z2 has two elements, the |+〉C state is a uniform
superposition of two elements. Thus, we use one qubit and the Hadamard gate to
generate the necessary state:

H |0〉 =
1
√

2
(|0〉 + |1〉) . (4.136)

The control register states need to be mapped to group elements. We employ the
mapping {|0〉 → e, |1〉 → g} for our circuit constructions.

G-Bose symmetry

We begin with a test for Bose symmetry, which in this case is a test whether the
state is equal to |0〉〈0|, because the group projector Π

Z2
S = (I + Z)/2 = |0〉〈0|. Calcu-

lation by hand or classical computation can easily verify whether a state is Bose
symmetric with respect to I and Z. Additionally, this simple gate set can be easily
implemented on existing quantum computers.

Figure 4.10a) shows the circuit that tests for this G-Bose symmetry. Table 4.2
shows the results for various input states. The true fidelity value is calculated
using (4.45), where ΠG

S is defined in (4.4).

G-symmetry

We now consider a simple test for G-symmetry. As mentioned in Remark 4.1, this
is also a test for incoherence of the input state, i.e., to determine if it is diagonal in
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State True
Fidelity

Noiseless Noisy

|0〉〈0| 1 1.0 0.9998
|1〉〈1| 0 0.0 0.0013
|+〉〈+| 0.5 0.5 0.5002
I/2 0.5 0.5 0.5092

Table 4.2: Results of Z2-Bose symmetry tests.

the computational basis. In the circuit depicted in Figure 4.10b), a parameterized
circuit substitutes the role of an all-powerful prover.

A circuit that tests for G-symmetry is shown in Figure 4.10b). As this circuit
involves variational parameters, an example of the training process is shown in
Figure 4.11. Table 4.3 shows the final results after training for various input states.
The true fidelity is calculated using the semi-definite program given in (4.121) and
is used as a comparison point.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1 0.9999 0.9987 0.9999
|1〉〈1| 1 1.0 1.0 0.9999
|+〉〈+| 0.5 0.5 0.5087 0.5
I/2 1 0.9999 0.9932 0.9999

Table 4.3: Results of Z2-symmetry tests.

4.5.2 Triangular dihedral group D3

G-Bose symmetry

Throughout Section 4.2, we have used the dihedral group of the equilateral tri-
angle, abbreviated as D3, as an example, and we continue to do so now. As a
reminder, this group is generated by a flip of order two and a rotation of or-
der three (denoted respectively by f and r). Then the group is specified as
D3 = {e, f , r, r2, f r, f r2} where e is the identity element. General dihedral groups
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Figure 4.11: Example of the training process for testing Z2-symmetry of ρ = I/2.
We see that the training exhibits a noise resilience.

have previously been studied as non-abelian groups for which a quantum algo-
rithm to find a hidden subgroup is available [Kup05].

In the introduction of Section 4.2, we provided a faithful, projective unitary
representation of this group given by letting U( f ) = CNOT, U(r) = CNOT ·SWAP,
and U(e) = I4. Figure 4.3 shows the circuit needed to test for G-Bose symmetry.
Note that we do not generate the control register using a quantum Fourier trans-
form; as the resultant control state is still equivalent to |+〉C = 1

√
6

∑
g∈D3
|g〉, this

simplification suffices for our calculations. Table 4.4 shows the results for various
input states. The true fidelity value is calculated using (4.45), where ΠG

S is defined
in (4.4).
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State True
Fidelity

Noiseless Noisy

|00〉〈00| 1 1.0000 0.9998
ρ 1 0.9999 0.8756

Φ+ 0.6666 0.6666 0.5864
π⊗2 0.5 0.5000 0.4716

Table 4.4: Results of D3-Bose symmetry tests. The state ρ is defined as |ψ〉〈ψ|where
|ψ〉 = 1

√
3
(|01〉 + |10〉 + |11〉).

G-symmetry

As with Z2, moving to G-symmetry requires the addition of a prover. This al-
teration was already depicted in Figure 4.5. The prover is replaced for practical
purposes with a parameterized circuit involving variational parameters, and the
training process is shown in Figure 4.12. Table 4.5 shows the final results after
training for various input states. The true fidelity is calculated using the semi-
definite program given in (4.121).

State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 1.0000 0.9999 0.9987 0.9999
ρ 1.0000 0.9999 0.6564 0.9425

Φ+ 0.6666 0.6666 0.5330 0.6415
π⊗2 1.0000 0.9989 0.5189 0.8712

Table 4.5: Results of D3-symmetry tests. The state ρ is defined as |ψ〉〈ψ| where
|ψ〉 = 1

√
3
(|01〉 + |10〉 + |11〉).

G-Bose symmetric extendibility

A circuit that tests for G-Bose symmetric extendibility was originally shown in
Figure 4.7 as the example circuit construction. Now, we show how that construc-
tion behaves under a parameterized circuit substitution of the prover. Again, we
give an example of the training behavior of the algorithm in Figure 4.13. We also
provide Table 4.6, which shows the final results after training for various input
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Figure 4.12: Example of the training process for testing D3-symmetry of Φ+. We
see that the training exhibits a noise resilience.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1.0000 1.0000 0.8758 0.9988
|1〉〈1| 0.6670 0.6667 0.5834 0.6663
π 1.0000 1.0000 0.8255 0.9995[1

3
1
3

1
3

2
3

]
1.0000 0.9999 0.6564 0.9425

Table 4.6: Results of D3-Bose symmetric extendibility tests.

states. The true fidelity is calculated using the semi-definite program given in
(4.122).
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Figure 4.13: Example of the training process for testing D3-Bose symmetric ex-
tendibility of |1〉〈1|. We see that the training exhibits a noise resilience.

G-symmetric extendibility

Finally, we address the circuit in Figure 4.9, which gives a test for G-symmetric
extendibility. This final circuit has the prover performing two actions at once—
both finding the correct purification as in the case of G-symmetry and creating
the correct extension as in G-Bose symmetric extendibility tests. Once again, the
prover is replaced with a parameterized circuit, and an example of the training
process is shown in Figure 4.14. Table 4.7 shows the final results after training
for various input states. The true fidelity is calculated using the semi-definite
program given in (4.123).

162



0 25 50 75 100 125 150 175 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Ac

ce
pta

nc
e P

rob
ab

ilit
y

Noiseless Simulator
Noisy Simulator
True Value
Final noisy parameters on noiseless simulator

Figure 4.14: Example of the training process for testing D3-symmetric extendibility
of |0〉〈0|. We see that the training exhibits a noise resilience.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1.0000 0.9998 0.6725 0.9835
|1〉〈1| 0.6666 0.6641 0.4476 0.6497
π 1.0000 0.9988 0.6901 0.9764
ρ 0.9714 0.9662 0.5593 0.8789

Table 4.7: Results of D3-symmetric extendibility tests. The state ρ is defined as[
0.5 −0.354i

0.354i 0.5

]
.
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4.5.3 Collective U group

Given an n-qudit state ρ, we wish to test if it is symmetric with respect to the
following group:

GU B {U⊗n}U∈SU(d). (4.137)

This is an example of a continuous group symmetry; however, we will be able to
draw upon the particular properties of this projector to realize each symmetry test
nonetheless.

G-Bose symmetry

A state that is GU-Bose symmetric satisfies the condition given in (4.46), where

Π
(n)
U B

∫
dU U⊗n, (4.138)

with dU being the Haar measure for the group SU(d).

In what follows, we focus on two-qubit states. A simple calculation shows
that for n = 2 and d = 2, the singlet state |Ψ−〉 B 1

√
2

(|01〉 − |10〉), is the only GU-Bose
symmetric state. In other words,

Π
(2)
U = |Ψ−〉〈Ψ−|. (4.139)

Thus, testing for GU-Bose symmetry is equivalent to testing if the state is the sin-
glet state.

To test a symmetry of this form, we rewrite the projector in terms of a set {Ui}
N
i=1

of unitaries satisfying

Π
(2)
U =

1
N

N∑
i=1

Ui. (4.140)

While there exist multiple choices for the set {Ui}
N
i=1, we pick a set that is compatible

with all of the symmetry tests that we perform in the forthcoming subsections.
Our choice {Ui}

N
i=1 is given in [BDSW96, Appendix A] and is composed of products

of bilateral rotations Bx, By, and Bz, where

Ba B Ra(−π/2) ⊗ Ra(−π/2) , (4.141)
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and Ra is the following rotation gate about the a axis:

Ra(θ) B e−iθσa/2 (4.142)
= cos(θ/2)I − i sin(θ/2)σa. (4.143)

(Note the different convention that we take here, as compared to [BDSW96], when
defining bilateral rotations.) Specifically, the set {Ui}i is given by

{Ui}i = {I, BxBx, ByBy, BzBz, BxBy, ByBz,

BzBx, ByBx, BxByBxBy, ByBzByBz, BzBxBzBx, ByBxByBx}. (4.144)

The set {Ui}i forms a group isomorphic to the alternating group A4, which is
defined as the set of even permutations on four objects. Furthermore, A4 can be
written as a product of a Klein group on four objects K4 = {e, a = (12)(34), b =

(13)(24), c = (14)(23)} and the cyclic group C3 = {e, g = (123), h = (132)}. In other
words,

A4 = K4 ×C3. (4.145)

The Klein group K4 can be mapped as {e → I, a → BxBx, b → ByBy, c → BzBz}.
Similarly, the cyclic group can be mapped as {e → I, g → BxBy, h → ByBx}. We use
this to design our control register and corresponding mapping there. Since we
have 12 elements, the |+〉C state is a uniform superposition of 12 elements. How-
ever, the aforementioned decomposition allows us to split the control register into
two sets, one controlling the K4 group and another controlling the C3 group. We
use a unary encoding for both subgroups, leading to a five-qubit control register.
The specific mapping and group assignment are as follows:
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Control
State

Group
Element

Unitary Rep-
resentation

00 000 e I
00 100 c BzBz

00 010 b ByBy

00 001 a BxBx

01 000 g BxBy

01 100 gc ByBz

01 010 gb BzBx

01 001 ga ByBxByBx

10 000 h ByBx

10 100 hc ByBzByBz

10 010 hb BxByBxBy

10 001 ha BzBxBzBx

To generate an equal superposition of the 12 basis elements, we use the unitary
UW depicted in Figure 4.15. With this construction settled, we can now test for
symmetry with respect to this collective U group.

Figure 4.16a) depicts the circuit that tests for G-Bose symmetry. Table 4.8 shows
the results for various input states. The true fidelity value is calculated using
(4.45), where ΠG

S is defined in (4.4).

State True
Fidelity

Noiseless Noisy

|00〉〈00| 0 0.0000 0.0459
ρ 0.6667 0.6667 0.2661

Ψ+ 0 0.0000 0.0389
Ψ− 1.0 1.0000 0.3517

Table 4.8: Results of collective U-Bose symmetry tests. The state ρ is defined as
|ψ〉〈ψ|where |ψ〉 = 1

√
3

(|00〉 − |01〉 + |10〉).

G-symmetry

An n-qudit state ρ that is GU-symmetric satisfies the following condition:

ρ =

∫
dU U⊗nρ(U†)⊗n, (4.146)
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Figure 4.15: Unitary UW , with θ1 = θ3 = 2 arctan
(

1
√

2

)
and θ2 = π/3, generates the

equal superposition of 12 elements given. The circuit acting on the top two qubits
generates the state (|00〉+ |01〉+ |10〉)/

√
3, and the circuit acting on the bottom three

qubits generates the state (|000〉 + |001〉 + |010〉 + |100〉)/
√

4.

where dU is the Haar measure for the group SU(d). States that satisfy this condi-
tion for n = 2 are called Werner states [Wer89b], i.e.,

ρ =

∫
dU (U ⊗ U) ρ (U ⊗ U)†. (4.147)

As shown in [BDSW96], for n = 2 and d = 2, the continuum of rotations in the
symmetry test can be replaced by a discrete sum (a two-design), as follows:

ρ̄ =
1
N

N∑
i=1

UiρU†i , (4.148)

where {Ui}
N
i=1 is the set defined in (4.144). A circuit that tests for G-symmetry is

shown in Figure 4.16b). It involves variational parameters, and an example of the
training process is shown in Figure 4.17. Note that, as this construction requires
many qubits, only noiseless simulations results could be obtained. These results
may be easily extended as access to higher-qubit machines becomes more read-
ily available, allowing for noisy simulations of more complex systems. Table 4.9
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Figure 4.16: Symmetry tests for the collective-U group: a) G-Bose symmetry, b)
G-symmetry, c) G-Bose symmetric extendible, and d) G-symmetric extendible.

shows the final results after training for various input states. The true fidelity is
calculated using the semi-definite program given in (4.121).

State True
Fidelity

Noiseless

|10〉〈10| 0.5000 0.4997
ρ 0.6667 0.6666

Ψ+ 0.3333 0.3332
π⊗2 1.0000 0.9988

Table 4.9: Results of collective U-symmetry tests. The state ρ is defined as |ψ〉〈ψ|
where |ψ〉 = 1

√
3
(|00〉 − |01〉 + |10〉).

We note here that the GU-symmetry test would be unaffected by redefining the
integral over all unitaries U ∈ U(2) without the restriction to SU(2). However, the
projector for the GU-Bose symmetry test would be as follows in that case:

ΠU =

∫
U∈U(2)

dU U ⊗ U = 0, (4.149)
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Figure 4.17: Example of the training process for testing collective U-symmetry of
ρ = |ψ〉〈ψ|where |ψ〉 = 1

√
3
(|00〉 − |01〉 + |10〉).

making the test trivial. Thus, in the previous section, we chose to restrict the group
to SU(2) unitaries.

G-Bose symmetric extendibility

A circuit that tests for G-Bose symmetric extendibility is shown in Figure 4.16c). It
involves variational parameters, and an example of the training process is shown
in Figure 4.18. Table 4.10 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.122).
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Figure 4.18: Example of the training process for testing collective U-Bose symmet-

ric extendibility of the state
[
0.93 0

0 0.07

]
.

State True
Fidelity

Noiseless

|1〉〈1| 0.5000 0.5000
π 1.0000 0.9998[

0.93 0
0 0.07

]
0.7500 0.7499

Table 4.10: Results of collective U-BSE tests.

G-symmetric extendibility

A circuit that tests for G-symmetric extendibility is shown in Figure 4.16d). It
involves variational parameters, and an example of the training process is shown
in Figure 4.19. Table 4.11 shows the final results after training for various input
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State True
Fidelity

Noiseless

|0〉〈0| 0.5000 0.4995
π 1.0000 0.9996[

0.95 0
0 0.05

]
0.7169 0.7095

Table 4.11: Results of collective U-symmetric extendibility tests.

states. The true fidelity is calculated using the semi-definite program given in
(4.123).

These group symmetry tests have applications in the identification and verifi-
cation of Werner states, as discussed above. Current limitations include access to
higher qubit machines, but also the noisiness of these machines. Our VQA results
converge well in the noiseless case, but it is likely that noise will only become a
bigger problem as the circuit size scales up, unless adequately addressed.

4.5.4 Collective phase group

Given an n-qubit state ρ, we wish to test if the state is symmetric with respect to
the following collective phase group:

Gz B {Rz(φ)⊗n}φ∈[0,4π), (4.150)

where we recall that Rz(φ) B exp(−iφσz/2). The interval for φ is [0, 4π) to ensure that
Gz is a group. This is a consequence of SU(2) double covering SO(3), implying that
Rz(4π) = I. Additionally, the Haar measure for the group of unitaries {Rz(φ)}φ∈[0,4π)

is given by

dU =
dφ
4π
. (4.151)

G-Bose symmetry

A state that is Gz-Bose symmetric satisfies the condition given in (4.46), where

Π(n)
z B

1
4π

∫ 4π

0
Rz(φ)⊗n dφ. (4.152)
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Figure 4.19: Example of the training process for testing collective U-symmetric

extendibility of the state
[
0.95 0

0 0.05

]
.

Expressing Rz(φ) in the computational basis,

Rz(φ) = Diag
{
exp

(
−

iφ
2

)
, exp

( iφ
2

)}
. (4.153)

Similarly, expressing Rz(φ)⊗2 in the computational basis,

Rz(φ)⊗2 = Diag
{
exp (−iφ) , 1, 1, exp (iφ)

}
. (4.154)

Generalizing to the case of n qubits, observe that the number of zeros in a bit-
string x is n − H(x) and the number of ones is H(x), where H(x) is the Hamming
weight of x. For example, H(6) = 2 since 610 ≡ 1102. Each zero contributes a phase
of −φ/2 for a total of −(n − H(x))φ/2, and each one contributes a phase of φ/2, for a
total of H(x)φ/2. Then the overall total for the bit-string x is

− (n − H(x))φ/2 + H(x)φ/2 = (2H(x) − n)φ/2. (4.155)
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This implies that

Rz(φ)⊗n = Diag

exp
[(

2H(x) − n
2

)
iφ

]2n−1

x=0

 , (4.156)

where H(x) is the Hamming weight of x written in binary.

Performing the integral, we note that for a ∈ Z \ {0},∫ 4π

0
exp

(a
2

iφ
)

dφ = 0. (4.157)

Thus, only terms satisfying H(x) = n/2 survive the integral. Observe then that
Π

(n)
z = 0 for all odd n. Thus, it follows that

Π(n)
z =

Pk if n = 2k
0 otherwise,

(4.158)

where Pk is defined as the projector onto the subspace of computational basis ele-
ments with Hamming weight k. As an example, for n = 2,

Π(2)
z = P1 = |01〉〈01| + |10〉〈10|. (4.159)

To test a symmetry of this form, we rewrite the projector in terms of unitaries.
We construct a set of unitaries Uy such that

Π(n)
z =

1
n + 1

n∑
y=0

Uy. (4.160)

We use a construction similar to the form given in [Tom15, Eq. (2.59)]. Define a
unitary representation {Uy}

n
y=0 as

Uy B
n∑

x=0

exp
[
πi

n + 1
(2y − n) (2x − n)

]
Px. (4.161)

Observe that U†y Uy = I. Furthermore, we see that

n∑
y=0

Uy =

n∑
x=0

n∑
y=0

exp
[
πi

n + 1
(2y − n) (2x − n)

]
Px. (4.162)
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Consider that for integer c , 0,

n∑
y=0

exp
(
πi

n + 1
c (2y − n)

)
= exp

(
−πicn
n + 1

) 1 − exp(2πic)

1 − exp
(

2πic
n+1

) (4.163)

= 0. (4.164)

Thus, only terms satisfying 2x = n survive the summation. Therefore,

1
n + 1

n∑
y=0

Uy =

n∑
x=0

δ2x,nPx (4.165)

=

Pk if n = 2k
0 otherwise

(4.166)

= Π(n)
z . (4.167)

Thus, testing G-Bose symmetry with respect to Gz = {Rz(φ)⊗n}φ∈[0,4π) is equiva-
lent to testing G-Bose symmetry with respect to {Uy}

n
y=0. To summarize, testing if a

n-qubit state is Gz-Bose symmetric is equivalent to testing if it belongs to the sub-
space of Hamming weight n = 2k. As an aside, we note that a generalization of
our method allows for performing a projection onto constant-Hamming-weight
subspaces, which is useful in tasks like entanglement concentration [Wil17]. See
also [KM01] for alternative circuit constructions for performing measurements of
Hamming weight.

In what follows, we test the symmetry for an example, with n = 2. From the
definition, we see that

U0 = exp
(
−

2πi
3

)
P0 + P1 + exp

(
2πi
3

)
P2, (4.168)

U1 = I, (4.169)

U2 = exp
(
2πi
3

)
P0 + P1 + exp

(
−

2πi
3

)
P2

= U2
0 . (4.170)

Thus, the set of unitaries forms a unitary representation of the cyclic group C3. The
group table can be seen in Section 4.5.5, where {|00〉 → U1, |01〉 → U0, |11〉 → U2}.
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Figure 4.20: Unitary U3, with θ = 2 arctan
(√

2
)
, generates the equal superposition

of three elements from (4.173).

Expanding terms, we see that

U0 =

(
Rz

(
2π
3

))⊗2

. (4.171)

Furthermore, since U2 = U2
0 ,

U2 =

(
Rz

(
−

2π
3

))⊗2

. (4.172)

Since we have three elements, the |+〉C state is a uniform superposition of three
elements. We use two qubits and the unitary U3 used to generate the following
superposition, as shown in Figure 4.20:

U3 |00〉 =
1
√

3
(|00〉 + |01〉 + |11〉). (4.173)

Figure 4.21a) depicts the circuit that tests for G-Bose symmetry. Table 4.12
shows the results for various input states. The true fidelity value is calculated
using (4.45), where ΠG

S is defined in (4.4).

G-symmetry

A state that is Gz-symmetric satisfies the following condition:

ρ = C(n)
z (ρ), (4.174)
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State True
Fidelity

Noiseless Noisy

|00〉〈00| 0.0 0.0000 0.0220
ρ 1.0 1.0000 0.9170

|0〉〈0| ⊗ |+〉〈+| 0.5 0.5000 0.4877
π⊗2 0.5 0.5000 0.4661

Table 4.12: Results of collective-phase-Bose symmetry tests. The state ρ is defined
as |ψ〉〈ψ|where |ψ〉 = 1

√
2
(|01〉 + |10〉).

Figure 4.21: Symmetry tests for the collective phase group: a) G-Bose symmetry, b)
G-symmetry, c) G-Bose symmetric extendibility, and d) G-symmetric extendibility.
The unitary U0 is defined in (4.171). Note that U2 = U†0 .

where the collective dephasing channel C(n)
z is defined as

C(n)
z (ω) B

1
4π

∫ 4π

0
dφ Rz(φ)⊗nωR†z (φ)⊗n. (4.175)

Using the fact that
Rz(φ) = exp(−iφσz/2), (4.176)

we see that
Rz(φ) |a〉〈b|R†z (φ) = eiφ(a−b) |a〉〈b| , (4.177)
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for a, b ∈ {0, 1}. Thus, for a general n-qubit state ρ, expanded in the computational
basis as

ρ =
∑

x1,...,xn,y1,...,yn

ρx1,...,xn,y1,...,yn |x1 · · · xn〉〈y1 · · · yn| , (4.178)

it follows that

C(n)
z (ρ) =

∑
x1,...,xn,y1,...,yn

δ

∑
i

xi,
∑

j

y j

 ρx1,...,xn,y1,...,yn |x1 · · · xn〉〈y1 · · · yn| . (4.179)

Since
∑

i xi = H(x), it follows that

C(n)
z (ρ) =

n∑
k=0

PkρPk, (4.180)

where, as before, Pk is the projector onto the subspace of Hamming weight k. For
the case of n = 2, we get the following projectors

P0 = |00〉〈00|, (4.181)
P1 = |01〉〈01| + |10〉〈10|, (4.182)
P2 = |11〉〈11|. (4.183)

To test a symmetry of this form, we can rewrite the channel in terms of a set
{Uy}y of unitaries satisfying

C(n)
z (ρ) =

1
n + 1

n∑
y=0

UyρU†y . (4.184)

We now prove that the unitaries {Uy}
n
y=0 from (4.161) satisfy this condition:

1
n + 1

n∑
y=0

UyρU†y

=
1

n + 1

n∑
x,x′,
y=0

exp
[
πi

n + 1
(2y − n) 2

(
x − x′

)]
PxρPx′

=
1

n + 1

n∑
x,x′=0

(n + 1)δx,x′PxρPx′ (4.185)

=

n∑
x=0

PxρPx, (4.186)

177



0 25 50 75 100 125 150 175 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pta
nc

e P
rob

ab
ilit

y

Noiseless Simulator
Noisy Simulator
True Value
Final noisy parameters on noiseless simulator

Figure 4.22: Example of the training process for testing collective-phase-symmetry
of ρ = |Ψ+〉〈Ψ+|, where |Ψ+〉 = 1

√
2
(|01〉 + |10〉).

where the third equality follows from the reasoning in (4.164).

Thus, similar to the G-Bose symmetry tests, testing G-symmetry with respect
to Gz = {Rz(φ)⊗n}φ∈[0,4π) is equivalent to testing G-symmetry with respect to {Uy}

n
y=0.

To summarize, testing if an n-qubit state is Gz-symmetric is equivalent to testing
if it belongs to a subspace of fixed Hamming weight. In this work, we test the
symmetry for n = 2.

A circuit that tests for G-symmetry is shown in Figure 4.21b). It involves varia-
tional parameters, and an example of the training process is shown in Figure 4.22.
Table 4.13 shows the final results after training for various input states. The true
fidelity is calculated using the semi-definite program given in (4.121).
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State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 1.0000 0.9999 0.8380 0.9928
ρ 1.0000 1.0000 0.8162 0.9906
τ 0.5001 0.5000 0.4630 0.4990
π⊗2 1.0000 0.9998 0.8417 0.9934

Table 4.13: Results of collective-phase-symmetry tests. The state ρ is defined as
|Ψ+〉〈Ψ+|where |Ψ+〉 = 1

√
2
(|01〉+ |10〉). The state τ is defined as |Φ+〉〈Φ+|where |Φ+〉 =

1
√

2
(|00〉) + |11〉).

G-Bose symmetric extendibility

A circuit that tests for G-Bose symmetric extendibility is shown in Figure 4.21c). It
involves variational parameters, and an example of the training process is shown
in Figure 4.23. Table 4.14 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.122).

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1.0000 1.0000 0.9783 0.9980
σ 1.0000 1.0000 0.9349 0.9993
|−〉〈−| 0.5002 0.5000 0.4464 0.5000
ρ 0.9330 0.9330 0.9208 0.9328

Table 4.14: Results of collective-phase-Bose symmetric extendibility tests. The

state σ is defined as 3
4 |0〉〈0| +

1
4 |1〉〈1|. The state ρ is defined as

[
0.93 0.25
0.25 0.07

]
.

G-symmetric extendibility

A circuit that tests for G-symmetric extendibility is shown in Figure 4.21d). It
involves variational parameters, and an example of the training process is shown
in Figure 4.24. Table 4.15 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.123).
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Figure 4.23: Example of the training process for testing collective-phase-Bose sym-
metric extendibility of 3

4 |0〉〈0| +
1
4 |1〉〈1|. We see that the training exhibits a noise

resilience.

4.5.5 Cyclic group C3

Cyclic groups, denoted by Cn, are abelian groups formed by cyclic shifts of n el-
ements and always have order n. Consider first C3, the cyclic group on three
elements. The group table for C3 is given by

Group
element

e a b

e e a b
a a b e
b b e a

The C3 group has a one-dimensional representation given by the third roots
of unity, but here we instead opt for a two-qubit unitary representation cor-
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State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1.0000 0.9960 0.8632 0.9988
|+〉〈+| 0.5000 0.5000 0.4580 0.4997
ρ 0.7500 0.7494 0.6577 0.7484

Table 4.15: Results of collective-phase-symmetric extendibility tests. The state ρ is

defined as
[
0.75 0.43
0.43 0.25

]
.
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Figure 4.24: Example of the training process for testing collective-phase-
symmetric extendibility of |+〉〈+|.

responding more closely to the standard representation of C3: {e → I, a →
SWAP ◦ CNOT, b→ SWAP ◦ CNOT ◦ SWAP ◦ CNOT}. The C3 group has three
elements, and thus, the |+〉C state is a uniform superposition of three elements. We
use two qubits and the same unitary U3 shown in Figure 4.20 to generate an equal
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Figure 4.25: Symmetry tests for the C3 group: a) G-Bose symmetry, b) G-symmetry,
c) G-Bose symmetric extendibility, and d) G-symmetric extendibility.

superposition of three elements:

U3 |00〉 =
1
√

3
(|00〉 + |01〉 + |11〉). (4.187)

The control register states need to be mapped to group elements. We employ
the mapping {|00〉 → e, |01〉 → a, |11〉 → b} for our circuit constructions. The
circuits required for all tests are given in Figure 4.25.

G-Bose symmetry

Figure 4.25a) shows the circuit that tests for G-Bose symmetry. Table 4.16 shows
the results for various input states. The true fidelity value is calculated using
(4.45), where ΠG

S is defined in (4.4).
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State True
Fidelity

Noiseless Noisy

|00〉〈00| 1.0 1.0000 0.8415
|−+〉〈−+| 0.3333 0.3333 0.3408

ρ 1.0 1.0000 0.8524
π⊗2 0.5 0.5000 0.4698

Table 4.16: Results of C3-Bose symmetry tests. The state ρ is defined as |ψ〉〈ψ|where
|ψ〉 = 1

√
3
(|01〉 + |10〉 + |11〉).

G-symmetry

A circuit that tests for G-symmetry is shown in Figure 4.25b). It involves varia-
tional parameters, and an example of the training process is shown in Figure 4.26.
Table 4.17 shows the final results after training for various input states. The true
fidelity is calculated using the semi-definite program given in (4.121).

State True
Fidelity

Noiseless Noisy Noise
Resilient

|−+〉〈−+| 0.3339 0.3333 0.3084 0.3333
Φ+ 0.6666 0.6666 0.5118 0.6639
ρ 0.7778 0.7775 0.5694 0.7760
π⊗2 1.0000 0.9998 0.6756 0.9864

Table 4.17: Results of C3-symmetry tests. The state ρ is defined as |ψ〉〈ψ| where
|ψ〉 = 1

√
3
(|00〉 + |11〉 + |10〉).

G-Bose symmetric extendibility

A circuit that tests for G-Bose symmetric extendibility is shown in Figure 4.25c). It
involves variational parameters, and an example of the training process is shown
in Figure 4.27. Table 4.18 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.122).
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Figure 4.26: Example of the training process for testing C3-symmetry of Φ+. We
see that the training exhibits a noise resilience.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 0.6670 0.6667 0.5662 0.6665
π 1.0000 1.0000 0.8066 0.9979
ρ 0.8382 0.8380 0.7093 0.8377

Table 4.18: Results of C3-Bose symmetric extendibility tests. The state ρ is defined
as |ψ〉〈ψ|where |ψ〉 = 1

2 (
√

3 |0〉 − |1〉).

G-symmetric extendibility

A circuit that tests for G-symmetric extendibility is shown in Figure 4.25d). It
involves variational parameters, and an example of the training process is shown
in Figure 4.28. Table 4.19 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
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Figure 4.27: Example of the training process for testing C3-Bose symmetric ex-
tendibility of |1〉〈1|. We see that the training exhibits a noise resilience.

(4.123).

State True
Fidelity

Noiseless Noisy Noise
Resilient

|1〉〈1| 0.6667 0.6660 0.4809 0.6620
π 1.0000 0.9942 0.6818 0.9812
ρ 0.8383 0.8322 0.5992 0.8327

Table 4.19: Results of C3-symmetric extendibility tests. The state ρ is defined as
|ψ〉〈ψ|where |ψ〉 = 1

2 (
√

3 |0〉 − |1〉).
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Figure 4.28: Example of the training process for testing C3-symmetric extendibility
of ρ = |ψ〉〈ψ|, where |ψ〉 = 1

2 (
√

3 |0〉 − |1〉). We see that the training exhibits a noise
resilience.

4.5.6 Cyclic group C4

In this section, we consider C4, the cyclic group on four elements. Again, as an
abelian group, there exists a one-dimensional representation that we choose not
to employ here. Instead, we consider again a two-qubit representation.

The group table for C4 is given by

Group
element

e a b c

e e a b c
a a b c e
b b c e a
c c e a b
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Figure 4.29: Symmetry tests for the C4 group: a) G-Bose symmetry, b) G-symmetry,
c) G-Bose symmetric extendibility, and d) G-symmetric extendibility.

This group has a two-qubit unitary representation {e → I, a → X0 ◦ SWAP, b →
X0X1, c → X1 ◦ SWAP}, where Xi denotes the Pauli σx operator acting on qubit i,
for i ∈ {0, 1}. The C4 group has four elements, and thus, the |+〉C state is a uniform
superposition of four elements. We use two qubits and the Hadamard gate to
generate the control state, as follows:

H⊗2 |00〉 =
1
2

(|00〉 + |01〉 + |10〉 + |11〉) . (4.188)

The control register states need to be mapped to group elements. We employ the
mapping {|00〉 → e, |01〉 → a, |10〉 → b, |11〉 → c} for our circuit constructions.

G-Bose symmetry

Figure 4.29a) shows a circuit that tests for G-Bose symmetry. Table 4.20 shows the
results for various input states. The true fidelity value is calculated using (4.45),
where ΠG

S is defined in (4.4).
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State True
Fidelity

Noiseless Noisy

|00〉〈00| 0.25 0.2500 0.2579
|++〉〈++| 1.0 1.0000 0.9276
|+0〉〈+0| 0.5 0.5000 0.5002
π⊗2 0.25 0.2500 0.2449

Table 4.20: Results of C4-Bose symmetry tests.
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Figure 4.30: Example of the training process for testing C4-symmetry of ρ = |ψ〉〈ψ|,
where |ψ〉 = |+−〉. We see that the training exhibits a noise resilience.

G-symmetry

A circuit that tests for G-symmetry is shown in Figure 4.29b). It involves varia-
tional parameters, and an example of the training process is shown in Figure 4.30.
Table 4.21 shows the final results after training for various input states. The true
fidelity is calculated using the semi-definite program given in (4.121).
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State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 0.2502 0.2500 0.2562 0.2500
|+−〉〈−+| 0.5008 0.5000 0.4187 0.4984
π ⊗ |0〉〈0| 0.7501 0.7498 0.6140 0.7480
π⊗2 1.0000 0.9992 0.7606 0.9912

Table 4.21: Results of C4-symmetry tests.

G-Bose symmetric extendibility

A circuit that tests for G-Bose symmetric extendibility is shown in Figure 4.29c). It
involves variational parameters, and an example of the training process is shown
in Figure 4.31. Table 4.22 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.122).

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 0.5000 0.5000 0.4671 0.4995
|+〉〈+| 1.0000 1.0000 0.9195 1.0000
ρ 0.9330 0.9330 0.8689 0.9329

Table 4.22: Results of C4-Bose symmetric extendibility tests. The state ρ is defined

as
[

0.75 0.4330
0.4430 0.25

]
.

G-symmetric extendibility

A circuit that tests for G-symmetric extendibility is shown in Figure 4.29d). It
involves variational parameters, and an example of the training process is shown
in Figure 4.32. Table 4.23 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.123).
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Figure 4.31: Example of the training process for testing C4-Bose symmetric ex-
tendibility of |00〉〈00|. We see that the training exhibits a noise resilience.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 0.5000 0.4997 0.4191 0.4982
π 1.0000 0.9996 0.7608 0.9884
ρ 0.8535 0.8533 0.6838 0.8459

Table 4.23: Results of C4-symmetric extendibility tests. The state ρ is defined as[
0.854 0

0 0.146

]
.

4.5.7 Quaternion group Q8

The Quaternion group is defined as

Q8 = 〈ē, i, j, k | ē2 = e, i2 = j2 = k2 = i jk = ē〉. (4.189)
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Figure 4.32: Example of the training process for testing C4-symmetry extendibility
of π. We see that the training exhibits a noise resilience.

The inverse elements of e, i, j, k are given by ē, ī, j̄, k̄ respectively. The Q8 group has
a two-qubit unitary representation

e =

[
I 0
0 I

]
, ē =

[
I 0
0 −I

]
,

i =

[
I 0
0 −iσx

]
, ī =

[
I 0
0 iσx

]
,

j =

[
I 0
0 −iσy

]
, j̄ =

[
I 0
0 iσy

]
,

k =

[
I 0
0 −iσz

]
, k̄ =

[
I 0
0 iσz

]
. (4.190)

The Q8 group has eight elements and thus, the |+〉C state is a uniform superpo-
sition of eight elements. We use three qubits and the Hadamard gate to generate
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Figure 4.33: Symmetry tests for the Q8 group: a) G-Bose symmetry, b) G-symmetry,
c) G-Bose symmetric extendibility, and d) G-symmetric extendibility.

it as follows:

H⊗3 |000〉 =
1
√

8

(
|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉

)
. (4.191)

The control register states need to be mapped to group elements. We employ the
mapping {|000〉 → e, |001〉 → ī, |010〉 → j, |011〉 → k̄, |100〉 → k, |101〉 → j̄, |110〉 →
i, |111〉 → ē} for our circuit constructions.

G-Bose symmetry

Figure 4.33a) shows the circuit needed to test for G-Bose symmetry. Table 4.24
shows the results for various input states. The true fidelity value is calculated
using (4.45), where ΠG

S is defined in (4.4).

G-symmetry

A circuit that tests for G-symmetry is shown in Figure 4.33b). It involves varia-
tional parameters, and an example of the training process is shown in Figure 4.34.
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State True
Fidelity

Noiseless Noisy

|00〉〈00| 1.0 1.0000 0.7416
|1+〉〈1+| 0.0 0.0000 0.0709
|+0〉〈0+| 0.5 0.4999 0.3961
π⊗2 0.5 0.4999 0.3842

Table 4.24: Results of Q8-Bose symmetry tests.
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Figure 4.34: Example of the training process for testing Q8-symmetry of ρ = |ψ〉〈ψ|,
where |ψ〉 = |1+〉. We see that the training exhibits a noise resilience.

Table 4.25 shows the final results after training for various input states. The true
fidelity is calculated using the semi-definite program given in (4.121).
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State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 1.0000 0.9998 0.5430 0.9960
|1+〉〈1+| 0.5000 0.4999 0.2433 0.4924

ρ 0.7500 0.7499 0.4581 0.7447
π⊗2 1.0000 0.9998 0.2448 0.3774

Table 4.25: Results of Q8-symmetry tests. The state ρ is defined as |ψ〉〈ψ| where
|ψ〉 = 1

2 (
√

3 |00〉 + |11〉).

G-Bose symmetric extendibility

A circuit that tests for G-Bose symmetric extendibility is shown in Figure 4.33c). It
involves variational parameters, and an example of the training process is shown
in Figure 4.35. Table 4.26 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.122).

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1.0000 1.0000 0.7161 1.0000
π 0.5000 0.5000 0.4086 0.5000
ρ 0.9330 0.9330 0.6519 0.9330

Table 4.26: Results of Q8-Bose symmetric extendibility tests. The state ρ is defined

as
[
0.933 0.25
0.25 0.067

]
.

G-symmetric extendibility

A circuit that tests for G-symmetric extendibility is shown in Figure 4.33d). It
involves variational parameters, and an example of the training process is shown
in Figure 4.36. Table 4.27 shows the final results after training for various input
states. The true fidelity is calculated using the semi-definite program given in
(4.123).
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Figure 4.35: Example of the training process for testing Q8-Bose symmetric ex-
tendibility of |+〉〈+|. We see that the training exhibits a noise resilience.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|0〉〈0| 1.0000 0.9995 0.5951 0.9964
|+〉〈+| 0.5000 0.5000 0.2918 0.4974
π 1.0 0.9985 0.4605 0.8778

Table 4.27: Results of Q8-symmetric extendibility tests.

4.5.8 k-Extendibility and k-Bose extendibility

As seen in Examples 4.1 and 4.2, k-extendibility and k-Bose extendibility are spe-
cial cases of G-symmetric extendibility and G-Bose symmetric extendibility, re-
spectively. In this section, we look at the cases of two and three extending subsys-
tems.

As seen in (4.13)–(4.16), URS (g) = IA ⊗ WB1···Bk(π), where WB1···Bk(π) is a unitary
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Figure 4.36: Example of the training process for testing Q8-symmetry extendibility
of |0〉〈0|. We see that the training exhibits a noise resilience.

representation of the symmetric group S k. Thus, given a unitary representation of
S k, we can test for the required symmetries.

The S 2 group has two elements, and the group table is given by

Group
element

e a

e e a
a a e

The standard representation of S 2 translates easily to a two-qubit unitary rep-
resentation with {e→ I, a→ F}, where F is the SWAP gate. In fact, throughout this
section, we will consider unitary representations corresponding to system permu-
tations in a direct correspondence with the standard representations of S k. Using
this definition, let URS (e) = IA ⊗ IB1B2 and URS (a) = IA ⊗ FB1B2 . Since we have two
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elements, the |+〉C state is a uniform superposition of two elements. We thus use
one qubit and the Hadamard gate to generate the necessary state:

H |0〉 =
1
√

2
(|0〉 + |1〉) . (4.192)

The control register states need to be mapped to group elements; for this, we
employ the mapping {|0〉 → e, |1〉 → a} for our circuit constructions.

Similarly, the S 3 group has six elements and the group table is given by

Group
element

e a b c d f

e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d c a b f e
f f b c a e d

The S 3 group has a three-qubit unitary representation {e → I, a → F23, b →
F13, c → F12, d → F12F23, f → F13F23}, where Fi j is the SWAP gate between qubits
i and j. Since we have six elements, the |+〉C state is a uniform superposition
of six elements. We use three qubits and the same unitary Ud used to generate
the superposition for the triangular dihedral group, as shown in Figure 4.2, to
generate an equal superposition of six elements,

Ud |000〉 =
1
√

6
(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉). (4.193)

The control register states need to be mapped to group elements, and we do so via
the mapping {|000〉 → e, |001〉 → a, |010〉 → b, |011〉 → f , |100〉 → c, |101〉 → d}.

Two-Bose extendibility

A circuit that tests for two-Bose extendibility is shown in Figure 4.37a). It involves
variational parameters, and an example of the training process is shown in Fig-
ure 4.38. Table 4.28 shows the final results after training for various input states.
The true fidelity is calculated using the semi-definite program given in (4.122).
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Figure 4.37: Tests for extendibility: a) two-Bose extendibility, b) two-extendibility,
c) three-Bose extendibility, and d) three-extendibility.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 1.0000 1.0000 0.9544 0.9995
ρ 1.0000 1.0000 0.9584 0.9995

Ψ+ 0.7500 0.7500 0.7256 0.7500

Table 4.28: Results of S 2-Bose symmetric extendibility tests. The state ρ is defined
as 3

4 |00〉〈00| + 1
4 |11〉〈11|.

Two-Extendibility

Similar to the non-extended cases, it is simpler to test if a state exhibits G-BSE—
or, in this case, if the state is k-Bose-symmetric extendible—than to test if it is
symmetric extendible. This is reflected in Figure 4.37b), which shows a test for
2-BSE. The circuit involves variational parameters, and an example of the training
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Figure 4.38: Example of the training process for testing two-Bose extendibility of
ρ = 3

4 |00〉〈00| + 1
4 |11〉〈11|. We see that the training exhibits a noise resilience.

process is shown in Figure 4.39. Table 4.29 shows the final results after training
for various input states. The true fidelity is calculated using the semi-definite
program given in (4.123).

Three-Bose Extendibility

A circuit that tests for three-Bose extendibility is shown in Figure 4.37c). It in-
volves variational parameters, and an example of the training process is shown
in Figure 4.40. Table 4.30 shows the final results after training for various in-
put states. The true fidelity is calculated using the semi-definite program given
in (4.122).
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Figure 4.39: Example of the training process for testing two-extendibility of ρ =

|ψ〉〈ψ|, where |ψ〉 = 1
√

2
|11〉 + 1

√
6
(|00〉 + |01〉 + |10〉). We see that the training exhibits a

noise resilience.

Three-Extendibility

A circuit that tests for three-extendibility is shown in Figure 4.37d). It involves
variational parameters, and an example of the training process is shown in Fig-
ure 4.41. Table 4.31 shows the final results after training for various input states.
The true fidelity is calculated using the semi-definite program given in (4.123).

For all of the above cases, we see that results achieved via parameterized cir-
cuit substitutions for the prover demonstrate noise resilience, and thus give some
confidence for practical applications. In this final case, we have shown explicitly
how our algorithm allows for tests of k-extendibility and related quantities. While
only small systems are considered here, this is a limitation of current hardware
more so than of the algorithm itself. Indeed, it would be interesting to observe
the performance of this algorithm on higher fidelity machines with more qubits,
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State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 1.0000 0.9991 0.9267 0.9960
ρ 0.9925 0.9901 0.9720 0.9913

Ψ+ 0.7506 0.7498 0.6959 0.7480

Table 4.29: Results of S 2-symmetric extendibility tests. The state ρ is defined as
|ψ〉〈ψ| where |ψ〉 = 1

√
2
|11〉 + 1

√
6
(|00〉 + |01〉 + |10〉). The reduced state of ρ has eigen-

values 1
6

(
3 +

√
5 + 2

√
3
)
≈ 0.985 and 1

6

(
3 −

√
5 + 2

√
3
)
≈ 0.015. It is thus not so

entangled, and we expect its two-extendible fidelity to be close to one.

State True
Fidelity

Noiseless Noisy Noise
Resilient

|00〉〈00| 1.0000 0.9999 0.8644 0.9982
ρ 1.0000 0.9994 0.8403 0.9851

Ψ+ 0.6675 0.6667 0.5666 0.6666

Table 4.30: Results of S 3-Bose symmetric extendibility tests. The state ρ is defined
as 3

4 |00〉〈00| + 1
4 |11〉〈11|.

which could possibly be achievable in the near future.

4.6 Estimating symmetry measures as complexity classes

In this section, we present results connecting the quantum complexity classes hi-
erarchy and different symmetry testing algorithms. Figure 4.42 provides all the

State True
Fidelity

Noiseless

|00〉〈00| 1.0000 0.9970
ρ 1.0000 0.9988

Ψ+ 0.6670 0.6650

Table 4.31: Results of S 3-symmetric extendibility tests. Here, ρ = 3
4 |00〉〈00| +

1
4 |11〉〈11|.
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Figure 4.40: Example of the training process for testing three-Bose extendibility of
ρ = 3

4 |00〉〈00| + 1
4 |11〉〈11|. We see that the training exhibits a noise resilience.

results and details of our paper at a glance and places some of them in a con-
tainment diagram for ease of access. The results presented here all have a similar
proof idea – prove that the promise problem is in the complexity class of interest
and that the problem is hard for the same complexity class. For all the hardness
results, we either map an existing complete problem to the problem of interest, or
we show that a generic problem that defines the class can be rewritten in terms
of the problem of interest. In the latter case, we select the group and the input
state such that the acceptance probability of the problem maps to the correspond-
ing symmetry quantity. In most cases, we pick the group to be C2 = {I,V}, with
V2 = I. We find that this is the simplest choice of the group G. The choice of V is
then “reverse-engineered" in a way to match the symmetry quantity. While this
preview discussion might seem a bit abstract as of now, we make the concepts
more concrete in the specific examples that follow, with the first being discussed
in more detail around (4.196)–(4.198).
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Figure 4.41: Example of the training process for testing three-extendibility of
|00〉〈00|.

4.6.1 Testing G-Bose symmetry of a state is BQP-Complete

In this section, we show that testing the G-Bose Symmetry of a state is BQP-
Complete. We begin now by specifying this problem statement in precise terms.

Problem 4.1 [(α, β)-State-G-Bose-Symmetry]. Let α and β be such that 0 ≤ β < α ≤ 1.
Given are descriptions of a circuit Uρ

RS that generates a purification of a state ρS and circuit
descriptions of a representation {US (g)}g∈G of a group G. Decide which of the following
holds:

Yes: Tr
[
ΠG

S ρS

]
≥ α, (4.194)

No: Tr
[
ΠG

S ρS

]
≤ β, (4.195)

where the group representation projector ΠG
S is defined in (4.4).

As observed in [LRW23, Section 3.1], the measure Tr
[
ΠG

S ρS

]
is a faithful sym-
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QIPEB(2)-Complete
max

ωRS ∈SEP(R:S ),
TrR[ωRS ]=ρS

Tr
[
ΠG

RSωRS

]

QIP-Complete
max
ρ∈D(H),
σ∈BSEG

F(N(ρ), σ)

QIP(2)-Complete
max
σ∈BSEG

F(ρ, σ)

QSZK-Complete
min

σ∈SymG

1
2 ‖ρ − σ‖1

max
σ∈SymG

F(ρ, σ)

QMA-Complete
max
ρ∈D(H)

Tr
[
ΠGN(ρ)

]

BQP-Complete
Tr

[
ΠGρ

]
1
|G|

∑
g∈G
‖[U(g), ρ]‖22

Figure 4.42: List of complete symmetry-testing problems and the corresponding
quantum complexity class. The cells are organized such that if a cell is connected
to a cell above it, the complexity class for the lower cell is a subset of that for the
higher cell. For example, QMA is a subset of QIP(2).

metry measure, in the sense that it is equal to one if and only if the state ρS is
Bose-symmetric.

Theorem 4.6. The promise problem State-G-Bose-Symmetry is BQP-Complete.

1. (α, β)-State-G-Bose-Symmetry is in BQP for all β < α, whenever the gap between α
and β is larger than an inverse polynomial in the input length.

2. (1 − ε, ε)-State-G-Bose-Symmetry is BQP-Hard, even when ε decays exponentially
in the input length.

Thus, (α, β)-State-G-Bose-Symmetry is BQP-Complete for all (α, β) such that 0 ≤ β <
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α ≤ 1.

Remark 4.3. In the statement of Theorem 4.6, the first part indicates the largest range
of parameters for which we can show that the problem is contained in BQP. Similarly,
the second part indicates the largest range of parameters for which we can show that the
problem is BQP-hard. Both of these parameter ranges include the case when α and β
are constants. As such, this leads to the final statement above that the problem is BQP-
complete for constant values of α and β satisfying the inequality constraint given. We
present all subsequent theorems in a similar way.

Proof of Theorem 4.6. To show that the problem is BQP-Complete, we need
to demonstrate two facts: first, that the problem is in BQP, and second, that it
is BQP-Hard. Let us begin by proving that the problem is in BQP. In [Har05,
Chapter 8] (see also [LRW23, Algorithm 1]), an algorithm was proposed to test for
G-Bose symmetry of a state ρS given a circuit description of unitary that generates
a purification of the state and circuit descriptions of a unitary representation of a
group G, {U(g)}g∈G. Since the algorithm can be performed efficiently, the problem
is contained in BQP.

Next, we show that any problem in the BQP class can be reduced to an in-
stance of this problem. The acceptance and rejection probabilities are encoded in
the state of the decision qubit, with zero indicating acceptance. Now, we need
to map this problem to an instance of State-G-Bose-Symmetry; i.e., using the cir-
cuit descriptions for a general BQP algorithm, we need to define a state ρS ′ and a
unitary representation {US ′(g)}g∈G, and also show how the symmetry-testing con-
dition Tr[ΠG

S ′ρS ′] can be written in terms of the BQP algorithm’s acceptance prob-
ability. To this end, we define the group G to be the cyclic group on two elements
C2 = {I,V} such that V2 = I, where V is simply given by

VD = −ZD, (4.196)

and the input state to be

ρD = TrG[QS A→DG(|x〉〈x|S ⊗ |0〉〈0|A)(QS A→DG)†]. (4.197)

As such, we are making the identification S ′ ↔ D between the system label S ′ of
a general symmetry-testing problem and the system D for a BQP algorithm. The
group representation and circuit to generate ρD are thus efficiently implementable.
Furthermore, the state of interest is just the state of the decision qubit, and the
group projector for the unitary representation above is given by

ΠG
D =

1
2

(ID − ZD) = |1〉〈1|D. (4.198)
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Furthermore, we find that the symmetry-testing condition Tr[ΠG
DρD] maps to

the BQP algorithm’s acceptance probability as follows:

Tr[ΠG
DρD] = Tr[|1〉〈1|DρD]

= Tr[(|1〉〈1|D ⊗ IG)(QS A→DG(|x〉〈x|S ⊗ |0〉〈0|A)(QS A→DG)†)]

= ‖(〈1|D ⊗ IG)QS A→DG |x〉S |0〉A‖
2
2 . (4.199)

Comparing with (2.126), we observe that the acceptance probability of the BQP
algorithm exactly matches the symmetry-testing condition of the constructed G-
Bose symmetry-testing problem. As such, we have proven that any BQP problem
can be efficiently mapped to a G-Bose symmetry test, concluding the proof.

4.6.2 Testing G-symmetry of a state using Hilbert–Schmidt norm
is BQP-Complete

In this section, we show that testing the G-symmetry of a state using the Hilbert–
Schmidt norm is BQP-Complete, and it is thus emblematic of the class of problems
efficiently solvable using quantum computers.

Problem 4.2 [(α, β)-State-HS-Symmetry]. Given are a circuit description of a unitary
Uρ

RS that generates a purification of the state ρS and circuit descriptions of a unitary rep-
resentation {US (g)}g∈G of a group G. Let α and β be such that 0 ≤ β < α ≤ γ, where

γ B 2
(
1 −

1
|G|

)
. (4.200)

Decide which of the following holds:

Yes:
1
|G|

∑
g∈G

‖[U(g), ρ]‖22 ≤ β, (4.201)

No:
1
|G|

∑
g∈G

‖[U(g), ρ]‖22 ≥ α, (4.202)

where the Hilbert–Schmidt norm of a matrix A is defined as ‖A‖2 B
√

Tr[A†A].

As observed in [BRRW23, Section 1], the quantity in (4.201) is a faithful sym-
metry measure in the sense that it is equal to zero if and only if the state ρ is
G-symmetric, as in Definition 4.1.
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The quantity γ in (4.200) arises as a natural upper bound for 1
|G|

∑
g∈G
‖[U(g), ρ]‖22

because

1
|G|

∑
g∈G

‖[U(g), ρ]‖22

=
1
|G|

∑
g∈G

2
(
Tr[ρ2] − Tr[ρU(g)ρU(g)†]

)
=

1
|G|

∑
g∈G,g,e

2
(
Tr[ρ2] − Tr[ρU(g)ρU(g)†]

)
≤ γ, (4.203)

where the first equality follows from (4.204) below and the inequality follows be-
cause Tr[ρ2] ≤ 1 and Tr[ρU(g)ρU(g)†] ≥ 0. Furthermore, the upper bound is satu-
rated by choosing ρ to be |0〉〈0| in a d-dimensional space and the unitary represen-
tation to be the Heisenberg–Weyl shift operators {X(x)}d−1

x=0, such that X(x) |0〉 = |x〉.

Theorem 4.7. The promise problem State-HS-Symmetry is BQP-Complete.

1. (α, β)-State-HS-Symmetry is in BQP for all β < α. (It is implicit that the gap
between α and β is larger than an inverse polynomial in the input length.)

2. (γ − ε, ε)-State-HS-Symmetry is BQP-Hard, even when ε decays exponentially in
the input length.

Thus, (α, β)-State-HS-Symmetry is BQP-Complete for all (α, β) such that 0 ≤ β < α ≤ γ.

Proof. To show that the problem is BQP-Complete, we first show that it is in the
BQP class and then show that it is BQP-Hard. For the first part, let us briefly recall
the development from [BRRW23, Section 3.1]. Consider the following equalities:

‖[U(g), ρ]‖22 = ‖ρU(g) − U(g)ρ‖22

=
∥∥∥ρ − U(g)ρU(g)†

∥∥∥2

2

= Tr[ρ2] + Tr[(U(g)ρU(g)†)2] − 2 Tr[ρU(g)ρU(g)†]

= 2
(
Tr[ρ2] − Tr[ρU(g)ρU(g)†]

)
, (4.204)
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where the second equality is due to the unitary invariance of the Hilbert–Schmidt
norm. Thus, we see that

1
|G|

∑
g∈G

‖[U(g), ρ]‖22 =
1
|G|

∑
g∈G

2
(
Tr[ρ2] − Tr[ρU(g)ρU(g)†]

)
= 2

(
Tr[ρ2] − Tr[ρTG(ρ)]

)
= 2 (Tr[SWAP(ρ ⊗ ρ)] − Tr[SWAP(ρ ⊗ TG(ρ))]) , (4.205)

where TG is the twirl channel given by

TG(·) B
1
|G|

∑
g∈G

U(g)(·)U(g)† (4.206)

and SWAP is the unitary swap operator. The two terms can be individually esti-
mated by means of the destructive SWAP test [GECP13]. To realize the twirl, one
can pick an element g uniformly at random and apply U(g) to the state ρ. Since the
twirl and the SWAP test can be efficiently performed, it follows that the problem
is in the BQP class.

Next, we show that the problem is BQP-Hard by providing an efficient map-
ping from a general BQP problem to our problem of interest. Consider a general
BQP algorithm as described in Section 2.4.1. The output state of the BQP algo-
rithm is given by

QS A→DG |x〉S |0〉A . (4.207)

Then, the acceptance and rejection probabilities of the BQP algorithm are given by

pacc = ‖(〈1|D ⊗ IG)QS A→DG |x〉S |0〉A‖
2
2 , (4.208)

prej = 1 − pacc

= ‖(〈0|D ⊗ IG)QS A→DG |x〉S |0〉A‖
2
2 . (4.209)

Now, we need to map this problem to an instance of State-HS-Symmetry; i.e.,
we need to define a state ρ and a unitary representation {U(g)}g∈G. To this end, let
us define the group G to be the cyclic group on two elements, C2 = {I,V}, such that
V2 = I, where V is given by

VS AC = (QS A→DG)† CNOTDC QS A→DG, (4.210)

and the input state to be
ρS AC = |x〉〈x|S ⊗ |0〉〈0|AC. (4.211)
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From (4.204), we see that

1
|G|

∑
g∈G

‖[U(g), ρ]‖22 =
1
|G|

∑
g∈G

2(Tr[ρ2] − Tr[ρU(g)ρU(g)†])

= 1 − Tr[ρVρV†]

= 1 − |(〈x|S ⊗ 〈0|AC)V(|x〉S ⊗ |0〉AC)|2 . (4.212)

To show the equivalence, we now expand V as follows:

V(|x〉S ⊗ |0〉AC) = (QS A→DG)† CNOTDC QS A→DG(|x〉S ⊗ |0〉AC). (4.213)

Next, we insert an identity operator ID to simplify:

(QS A→DG)† CNOTDC QS A→DG(|x〉S ⊗ |0〉AC)

= (QS A→DG)† CNOTDC(|0〉〈0|D ⊗ IGC + |1〉〈1|D ⊗ IGC)QS A→DG(|x〉S ⊗ |0〉AC). (4.214)

Expanding, this reduces to

(QS A→DG)†(|0〉〈0|D ⊗ IGC + |1〉〈1|D ⊗ IG ⊗ XC)QS A→DG(|x〉S ⊗ |0〉AC)

= (QS A→DG)†(|0〉〈0|D)QS A→DG(|x〉S ⊗ |0〉AC)

+ (QS A→DG)†(|1〉〈1|D)QS A→DG(|x〉S ⊗ |0〉A |1〉C). (4.215)

Thus, by expanding prej as

prej = ‖(〈0|D ⊗ IG)QS A→DG(|x〉S ⊗ |0〉A)‖22
= (〈x|S ⊗ 〈0|A)(QS A→DG)†(|0〉〈0|D)QS A→DG(|x〉S ⊗ |0〉A), (4.216)

we find that

(〈x|S ⊗ 〈0|AC)V(|x〉S ⊗ |0〉AC) = (〈x|S ⊗ 〈0|A)(QS A→DG)†(|0〉〈0|D)QS A→DG(|x〉S ⊗ |0〉A)
= prej. (4.217)

We then finally see that

q B
1
|G|

∑
g∈G

‖[U(g), ρ]‖22 = 1 − p2
rej. (4.218)

Thus, given a method to estimate q within additive error ε, we can estimate prej

within an additive error of
√
ε. A proof of this can be found in Appendix C.6.

We can then estimate pacc = 1 −
√

1 − q within an additive error of
√
ε as well. As

such, a general BQP problem can be efficiently mapped to our problem of interest,
showing that State-HS-Symmetry is BQP-Hard. This along with that the fact that
the problem lies in BQP, completes the proof of BQP-Completeness.
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4.6.3 Testing G-Bose symmetry of the output of a channel is
QMA-Complete

In this section, we show that testing the G-Bose symmetry of the output of a chan-
nel with optimized input is QMA-Complete.

Problem 4.3 [(α, β)-Channel-G-Bose-Symmetry]. Let α and β be such that 0 ≤ β < α ≤
1. Given is a circuit description of a unitary UNBD′→S D that realizes a unitary dilation of a
channel

NB→S (·) B TrD[UNBD′→S D((·)B ⊗ |0〉〈0|D′)(UNBD′→S D)†] (4.219)

and circuit descriptions of a unitary representation {US (g)}g∈G of a group G. Decide which
of the following holds:

Yes: max
ρB

Tr
[
ΠG

SNB→S (ρB)
]
≥ α, (4.220)

No: max
ρB

Tr
[
ΠG

SNB→S (ρB)
]
≤ β, (4.221)

where the optimization is over every input state ρB.

Let us observe that the measure in (4.220) is a faithful symmetry measure, in
the sense that it is equal to one if and only if there exists an input state ρB such
that the output state NB→S (ρB) is Bose-symmetric. This follows from continuity of
Tr

[
ΠG

SNB→S (ρB)
]

and from the arguments in [LRW23, Section 3.1].

Theorem 4.8. The promise problem Channel-G-Bose-Symmetry is QMA-Complete.

1. (α, β)-Channel-G-Bose-Symmetry is in QMA for all β < α. (It is implicit that the
gap between α and β is larger than an inverse polynomial in the input length.)

2. (1 − ε, ε)-Channel-G-Bose-Symmetry is QMA-Hard, even when ε decays exponen-
tially in the input length.

Thus, (α, β)-Channel-Bose-Symmetry is QMA-Complete for all (α, β) such that 0 ≤ β <
α ≤ 1.

Proof. To show that the problem is QMA-Complete, we need to demonstrate
two facts: first, that the problem is in QMA, and second, that it is QMA-Hard.
Let us begin by proving that the problem is in QMA. Let ρB be a state sent by
the prover. This state is input to the channel NB→S defined in (4.219). This leads
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to the output state NB→S (ρB), on which the G-Bose symmetry test is conducted.
From [LRW23, Algorithm 1], we see that testing G-Bose symmetry can be done
efficiently when circuit descriptions of the unitaries {U(g)}g∈G are provided. The
acceptance probability of this test, for an input state ρB, is equal to Tr

[
ΠG

SNB→S (ρB)
]
.

Since the prover can optimize this probability over all possible input states, the
acceptance probability is then

max
ρB

Tr
[
ΠG

SNB→S (ρB)
]
. (4.222)

Thus, the entire estimation can be done efficiently when aided by an all-powerful
prover, establishing that the problem lies in QMA.

To show that the problem is QMA-Hard, we pick an arbitrary QMA problem
and map it to Channel-G-Bose-Symmetry. We use a similar construction proposed
above in Section 4.6.1. For the mapping, we need to define a channel N and a
unitary representation {U(g)}g∈G; i.e., using the circuit descriptions for a general
QMA algorithm, we need to define a channel NP→S ′ and a unitary representation
{US ′(g)}g∈G, and also show how the symmetry-testing condition

max
ρP

Tr[ΠG
S ′NP→S ′(ρP)] (4.223)

can be written in terms of the QMA algorithm’s acceptance probability. To this
end, we define the group G to be the cyclic group on two elements C2 = {I,V} such
that V2 = I, where V is simply given by

VD = −ZD, (4.224)

and we define the channel NP→D to be

NP→D(·) B TrG[QS AP→DG(|x〉〈x|S ⊗ |0〉〈0|A ⊗ (·)P)(QS AP→DG)†]. (4.225)

As such, we are making the identification S ′ ↔ D between the system label S ′ of
a general symmetry-testing problem and the system D for a QMA algorithm. The
group representation and the channel are thus efficiently implementable. Thus,
the channel output state of interest is just the state of the decision qubit, and the
group projector for the given unitary representation is given by

ΠG
D =

1
2

(ID − ZD) = |1〉〈1|D. (4.226)
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We then find, for a fixed input state ρP, the following equalities relating the
symmetry-testing condition to the QMA algorithm’s acceptance probability:

Tr
[
ΠG

DNP→D(ρP)
]

= Tr
[
|1〉〈1|DNP→D(ρP)

]
= Tr[(|1〉〈1|D ⊗ IG)(QS AP→DG(|x〉〈x|A ⊗ |0〉〈0|A ⊗ ρP)(QS AP→DG)†)]
= Pr[Q accepts (x, ρP)]. (4.227)

The prover then optimizes this probability over every input state ρP, and we
observe that the acceptance probability of the QMA algorithm exactly matches
the symmetry-testing condition of the constructed G-Bose symmetry testing algo-
rithm. As such, we have proven that any QMA problem can be efficiently mapped
to an instance of a Channel-G-Bose symmetry-testing problem, concluding the
proof.

4.6.4 Testing G-symmetry of a state using trace norm is QSZK-
Complete

In Section 4.6.2, we showed that testing G-symmetry of a state using the Hilbert–
Schmidt norm is BQP-Complete. In this section, we show that testing the G-
symmetry of a state using the trace norm is QSZK-Complete. As such, the com-
plexity of a G-symmetry test depends on the measure being used, much like what
was observed in [RASW23, Section V].

Problem 4.4 [(α, β)-State-G-Sym-TD]. Let α and β be such that 0 ≤ β < α ≤ 1. Given
are a circuit description of a unitary Uρ

RS that generates a purification of a state ρS and
circuit descriptions of a unitary representation {US (g)}g∈G of a group G. Decide which of
the following holds:

Yes: min
σ∈SymG

1
2
‖ρ − σ‖1 ≥ α, (4.228)

No: min
σ∈SymG

1
2
‖ρ − σ‖1 ≤ β, (4.229)

where the set SymG is defined as follows:

SymG B {σ ∈ D(H) : U(g)σU(g)† = σ ∀g ∈ G}. (4.230)
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Let us observe that the asymmetry measure in (4.228) is faithful, in the sense
that it is equal to zero if and only if the state ρ is G-symmetric. This follows from
the faithfulness of the trace norm and its continuity properties.

Theorem 4.9. The promise problem State-G-Sym-TD is QSZK-Complete.

1. (α, β)-State-G-Sym-TD is in QSZK for all 2β < α. (It is implicit that the gap
between α and 2β is larger than an inverse polynomial in the input length.)

2. (1 − ε, ε)-State-G-Sym-TD is QSZK-Hard, even when ε decays exponentially in
the input length.

Thus, (α, β)-State-G-Sym-TD is QSZK-Complete for all (α, β) such that 0 < 2β < α < 1.

Proof. To prove that the problem is QSZK-Complete, we need to show two facts.
First, we need to show that the problem is in the QSZK class. Next, we show that
the problem is QSZK-Hard; i.e., every problem in QSZK can be efficiently mapped
to this problem.

First, we show that it is in QSZK. We begin with a simple calculation. Consider
the case of a No instance, for which the following inequality holds

min
σ∈SymG

1
2
‖ρ − σ‖1 ≤ β. (4.231)

Let σ∗ ∈ SymG be a state achieving the minimum, so that

1
2
‖ρ − σ∗‖1 ≤ β. (4.232)

Define ρ as the result of twirling ρ with respect to the group elements of G. More
concretely,

ρ B TG(ρ) =
1
|G|

∑
g∈G

U(g)ρU†(g). (4.233)

From the data-processing inequality for the trace distance [Wil17, Chapter 9], and
the fact that TG(σ∗) = σ∗, we conclude that

1
2
‖ρ − σ∗‖1 =

1
2
‖TG(ρ) − TG(σ∗)‖1

≤
1
2
‖ρ − σ∗‖1

≤ β. (4.234)
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Now, using the triangle inequality for the trace distance, (4.232), and (4.234), we
find that

1
2
‖ρ − ρ‖1 ≤

1
2
‖ρ − σ∗‖1 +

1
2
‖σ∗ − ρ‖1 (4.235)

≤ β + β = 2β. (4.236)

Having established the above, we now construct a QSZK algorithm consisting
of the following steps:

1. The verifier randomly prepares the state ρ or ρ. The verifier can prepare the
latter state by preparing ρ and performing the group twirl TG.

2. The verifier sends the state to the prover, who performs an optimal measure-
ment to distinguish ρ from ρ.

3. The verifier accepts if the prover can guess the state that was prepared, and
the maximum acceptance probability of the prover is given by [Hel69,Hol72]

1
2

(
1 +

1
2
‖ρ − ρ‖1

)
. (4.237)

In the case of a No instance, by applying (4.235)–(4.236), this probability is
bounded from above as

1
2

(
1 +

1
2
‖ρ − ρ‖1

)
≤

1
2

(1 + 2β) =
1
2

+ β. (4.238)

In the case of a Yes instance, we find that

1
2
‖ρ − ρ‖1 ≥

1
2
‖ρ − σ∗‖1

≥ α.
(4.239)

This then implies, in this case, that the acceptance probability satisfies

1
2

(
1 +

1
2
‖ρ − ρ‖1

)
≥

1
2

(1 + α) (4.240)

=
1
2

+
1
2
α. (4.241)

214



Figure 4.43: Circuit to create the classical–quantum state τFB. The unitaries U0

and U1 generate purification of states ω0 and ω1, respectively. More concretely,
ωi

B = TrR′[U i|00〉〈00|AR(U i)†] for i ∈ {0, 1}.

Thus, there is a gap as long as

1
2

+
1
2
α >

1
2

+ β, (4.242)

which is the same as α > 2β.

The interactive proof system is quantum statistical zero-knowledge because, in
the case of a Yes instance, the verifier can efficiently simulate the whole interaction
on their own, and the statistical difference between the simulation and the actual
protocol is negligible. Thus, the problem is in the QSZK class.

Next, we show that an arbitrary problem in the QSZK class can be efficiently
mapped to this problem. We do so by mapping a known QSZK-Complete prob-
lem to this problem. We pick the (αs, βs)-State Distinguishability Problem (see
Definition 2.6).

Given circuits to generate the states ρ0
B and ρ1

B with the following soundness
and completeness parameters

Yes:
1
2

∥∥∥ρ0
B − ρ

1
B

∥∥∥
1
≥ αs, (4.243)

No:
1
2

∥∥∥ρ0
B − ρ

1
B

∥∥∥
1
≤ βs, (4.244)

we use the construction from [Wat02b, Theorem 1] to create circuits that generate
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states ω0, ω1 such that

Yes:
1
2

∥∥∥ω0 − ω1
∥∥∥

1
≥ 1 − 2−n (4.245)

No:
1
2

∥∥∥ω0 − ω1
∥∥∥

1
≤ 2−n. (4.246)

The value of n will be chosen later in the proof. The procedure from [Wat02b,
Theorem 1] runs in time polynomial in n and the size of the circuits that generate
ρi, and thus it is efficient.

Next, we define the following state

τFB B
1
2

(
|0〉〈0|F ⊗ ω0

B + |1〉〈1|F ⊗ ω1
B

)
, (4.247)

and define the group G to be {IF ⊗ IB, XF ⊗ IB}. A circuit to create the state τFB is
given in Figure 4.43. Twirling this state with respect to the group elements results
in the state

τFB B TG(τFB) = πF ⊗
1
2

(ω0
B + ω1

B), (4.248)

where πF B
1
2 (|0〉〈0|F + |1〉〈1|F). Then we find that

τFB − τFB

=
1
2
|0〉〈0| ⊗ ω0 +

1
2
|1〉〈1| ⊗ ω1 − π ⊗

1
2

(
ω0 + ω1

)
=

1
2
|0〉〈0| ⊗ ω0 +

1
2
|1〉〈1| ⊗ ω1 −

(
1
2
|0〉〈0| +

1
2
|1〉〈1|

)
⊗

1
2

(
ω0 + ω1

)
=

1
2
|0〉〈0| ⊗

(
ω0 −

1
2

(
ω0 + ω1

))
+

1
2
|1〉〈1| ⊗

(
ω1 −

1
2

(
ω0 + ω1

))
=

1
2
|0〉〈0| ⊗

1
2

(
ω0 − ω1

)
+

1
2
|1〉〈1| ⊗

1
2

(
ω1 − ω0

)
, (4.249)

which implies that
1
2
‖τFB − τFB‖1 =

1
4

∥∥∥ω0 − ω1
∥∥∥

1
. (4.250)

We now map Yes instances of Quantum-State-Distinguishability to Yes in-
stances of State-G-Sym-TD. For a Yes instance,

1
2

∥∥∥ρ0 − ρ1
∥∥∥

1
≥ αs =⇒

1
2

∥∥∥ω0 − ω1
∥∥∥

1
≥ 1 − 2−n. (4.251)
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Define σ∗ to be a state that achieves the following minimum:

1
2
‖τFB − σ

∗‖1 B min
σ∈SymG

1
2
‖τFB − σ‖1 . (4.252)

Using the triangle inequality and the data-processing inequality (the latter being
similar to how it was used before in (4.234)), we find that

1
2
‖τFB − τFB‖1 ≤

1
2
‖τFB − σ

∗‖1 +
1
2
‖σ∗ − τFB‖1

≤ 2
(
1
2
‖τFB − σ

∗‖1

)
= 2

(
min

σ∈SymG

1
2
‖τFB − σ‖1

)
. (4.253)

Thus, using (4.250), we see that

min
σ∈SymG

1
2
‖τFB − σ‖1 ≥

1
2

(
1
2
‖τFB − τFB‖1

)
=

1
4

(
1
2

∥∥∥ω0 − ω1
∥∥∥

1

)
≥

1 − 2−n

4
. (4.254)

As such, the Yes instances are mapped as follows:

1
2

∥∥∥ρ0 − ρ1
∥∥∥

1
≥ αs ⇒ min

σ∈SymG

1
2
‖τFB − σ‖1 ≥

1 − 2−n

4
. (4.255)

Similarly, consider a NO instance of Quantum-State-Distinguishability,

1
2

∥∥∥ρ0 − ρ1
∥∥∥

1
≤ βs. (4.256)

Then using (4.246) and (4.250),

min
σ∈SymG

1
2
‖τFB − σ‖1 ≤

1
2
‖τFB − τFB‖1

=
1
2

(
1
2

∥∥∥ω0 − ω1
∥∥∥

1

)
≤ 2−n−1. (4.257)
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As such, we have shown that (αs, βs)-Quantum-State-Distinguishability is effi-
ciently mapped to

(
1
4 (1 − 2−n), 2−n−1

)
-State-G-Sym-TD. Thus, a gap exists between

the soundness and completeness conditions if

(1 − 2−n)
4

> 2−n−1, (4.258)

which is equivalent to n > log2(3).

To conclude that State-G-Sym-TD is QSZK-Complete for arbitrary constants α
and β, one can use the constructions from Lemmas 2 and 3 of [Wat02b] to manip-
ulate the parameters 1

4 (1 − 2−n) and 2−n−1 as desired. The reasoning for this latter
statement is similar to that given at the end of the proof of [Wat02b, Theorem 6].

4.6.5 Testing G-symmetry of a state using fidelity is QSZK-
Complete

In this section, we show that testing G-Symmetry of a state using fidelity is QSZK-
Complete, where the fidelity of states ρ and σ is defined as [Uhl76]

F(ρ, σ) B
∥∥∥√ρ√σ∥∥∥2

1
. (4.259)

To show hardness, we provide an efficient mapping from the problem State-G-
Sym-TD, defined in Section 4.6.4, to the problem of interest State-G-Sym-Fid.

Problem 4.5 [(α, β)-State-G-Sym-Fid]. Let α and β be such that 0 ≤ β < α ≤ 1. Given
are a circuit description of a unitary Uρ

RS that generates a purification of a state ρS and
circuit descriptions of a unitary representation {U(g)}g∈G of a group G. Decide which of
the following holds:

Yes: max
σ∈SymG

F(ρ, σ) ≥ α, (4.260)

No: max
σ∈SymG

F(ρ, σ) ≤ β, (4.261)

where the set SymG is defined in (4.230).

Let us observe that the symmetry measure in (4.260) is faithful, in the sense
that it is equal to one if and only if the state ρ is G-symmetric. This follows from
the faithfulness and continuity properties of fidelity.

Theorem 4.10. The promise problem State-G-Sym-Fid is QSZK-Complete.
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Figure 4.44: QSZK algorithm to estimate the fidelity F(ρ, ρ) given a unitary Uρ

that prepares a purification of ρ and a unitary representation {U(g)}g∈G over which
the twirled state ρ is defined. The probability of measuring the all-zeros state
gives an estimate of the required fidelity. The isometry V is implemented by an
all-powerful prover. QFT is an abbreviation of the standard quantum Fourier
transform, which in this case takes |0〉 to |G|−1/2 ∑

g∈G |g〉.

1. (α, β)-State-G-Sym-Fid is in QSZK for all β < 4α − 3. (It is implicit that the gap
between 4α − 3 and β is larger than an inverse polynomial in the input length.)

2. (1 − ε, ε)-State-G-Sym-Fid is QSZK-Hard, even when ε decays exponentially in the
input length.

Thus, (α, β)-State-G-Sym-Fid is QSZK-Complete for all (α, β) such that 0 ≤ β < 4α−3 ≤
1.

Proof. Before we get into the proof, let us recall the sine distance of two quantum
states ρ, σ [Ras06]:

P(ρ, σ) B
√

1 − F(ρ, σ). (4.262)

The sine distance has a triangle-inequality property for states ρ, σ, ω:

P(ρ, σ) ≤ P(ρ, ω) + P(σ,ω). (4.263)

Furthermore, it has a data-processing inequality inherited from that of fidelity:

P(ρ, σ) ≥ P(N(ρ),N(σ)). (4.264)

To prove that State-G-Sym-Fid is QSZK-Complete, we need to show two re-
sults. First, we need to show that the problem belongs to QSZK and, second, that
the problem is QSZK-Hard.
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We first show that the problem belongs to QSZK. To this end, we propose an
algorithm to estimate the quantity F(ρ, ρ). The underlying principle is Uhlmann’s
theorem [Uhl76], which can be simply understood as follows:

F(ρS , σS ) = max
VR→R′
|〈ψσ|R′S (VR→R′ ⊗ IS )|ψρ〉RS |

2 , (4.265)

where the maximization is over every isometry VR→R′ and |ψρ〉RS and |ψσ〉RS are
purifications of ρS and σS , respectively. In other words, the fidelity of two states is
given by the maximum squared overlap between their purifications. To calculate
the fidelity of ρ and ρ, we then need purifications of both states. We are given a
unitary Uρ to prepare a purification of ρ that is used in the following manner:

|ψρ〉RS = Uρ
RS |0〉RS ,

ρS = TrR[|ψρ〉〈ψρ|RS ]. (4.266)

The following unitary generates a purification of ρ:

Uρ
CRS B

∑
g

|g〉〈g|C ⊗ US (g)

 QFTC Uρ
RS , (4.267)

as follows: ∣∣∣ψρ〉 = Uρ
CR′′S |0〉CR′′S

=

∑
g∈G

|g〉〈g|C ⊗ US (g)

 1
√
|G|

∑
g′∈G

|g′〉C |ψ
ρ〉R′′S

=
1
√
|G|

∑
g∈G

|g〉C ⊗ US (g) |ψρ〉R′′S . (4.268)

Thus, performing the partial trace over R′′C, we see that

TrR′′C[|ψρ〉〈ψρ|R′′C] =
1
|G|

∑
g

US (g)ρS U†S (g)

= ρ. (4.269)

Therefore, using the unitaries Uρ
RS and Uρ

R′S (where R′ ≡ R′′C), we can apply
Uhlmann’s theorem in tandem with an all-powerful prover (to implement the
isometry V) to estimate the fidelity. The construction for the algorithm can be
seen in Figure 4.44.
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In the case of a Yes-instance,

max
σ∈SymG

F(ρ, σ) ≥ α. (4.270)

Let σ∗ be a state achieving the maximum, i.e.,

F(ρ, σ∗) ≥ α,

⇔ P(ρ, σ∗) ≤
√

1 − α. (4.271)

Then

P(ρ, ρ) ≤ P(ρ, σ∗) + P(σ∗, ρ)
≤ 2P(ρ, σ∗)

≤ 2
√

1 − α,
⇔ F(ρ, ρ) ≥ 4α − 3, (4.272)

where the second inequality follows from the data-processing inequality (see
(4.264)) under the application of the twirling channel TG and the fact that σ∗ is
unchanged under the application of this channel.

In the case of a No-instance,

F(ρ, ρ) ≤ max
σ∈SymG

F(ρ, σ) ≤ β. (4.273)

Thus, there exists a gap as long as

α >
3 + β

4
. (4.274)

The interactive proof system is quantum statistical zero-knowledge because, in
the case of a Yes instance, the input state ρ is close to the twirled state ρ. Thus,
the verifier can efficiently simulate the whole interaction on their own, and the
statistical difference between the simulation and the actual protocol is negligible.
As such, the problem is in the QSZK class.

Next, we show that the problem is QSZK-Hard. To do this, we map the QSZK-
Complete problem State-G-Sym-TD to our problem. To show this, we make use
of two standard inequalities that relate the trace distance and fidelity of two states
[FvdG99]:

1 −
√

F(ρ, σ) ≤
1
2
‖ρ − σ‖1 , (4.275)√

1 − F(ρ, σ) ≥
1
2
‖ρ − σ‖1 . (4.276)
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Consider a No-instance of State-G-Sym-TD. Then,

1
2

min
σ∈SymG

‖ρ − σ‖1 ≤ β. (4.277)

Using (4.275), we see that

min
σ∈SymG

1 −
√

F(ρ, σ) ≤ min
σ∈SymG

1
2
‖ρ − σ‖1 ≤ β. (4.278)

Therefore, after some basic algebra,

max
σ∈SymG

F(ρ, σ) ≥ (1 − β)2. (4.279)

Similarly, consider a Yes-instance of State-G-Sym-TD. Then,

min
σ∈SymG

1
2
‖ρ − σ‖1 ≥ α. (4.280)

Using (4.276), we see that

α ≤ min
σ∈SymG

1
2
‖ρ − σ‖1 ≤ min

σ∈SymG

√
1 − F(ρ, σ). (4.281)

Therefore, after some basic algebra,

max
σ∈SymG

F(ρ, σ) ≤ 1 − α2. (4.282)

Thus, (α, β)-State-G-Sym-TD reduces to ((1−β)2, 1−α2)-State-G-Sym-Fid. Since
we mapped Yes (No) instances to No (Yes) instances, this proves that State-G-Sym-
Fid belongs to co-QSZK. Since QSZK is closed under complement, the problem
belongs to QSZK [Wat02b]. Thus, State-G-Sym-Fid is QSZK-Hard.

4.6.6 Testing G-Bose symmetric extendibility of a state is QIP(2)-
Complete

In this section, we show that testing G-Bose symmetric extendibility (G-BSE) of a
state is QIP(2)-Complete.
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Problem 4.6 [(α, β)-State-G-BSE]. Let α and β be such that 0 ≤ β < α ≤ 1. Given are a
circuit description of a unitary Uρ

RS that generates a purification of a state ρS and circuit
descriptions of a unitary representation {URS (g)}g∈G of a group G. Decide which of the
following holds:

Yes: max
σS ∈BSEG

F(ρS , σS ) ≥ α, (4.283)

No: max
σS ∈BSEG

F(ρS , σS ) ≤ β, (4.284)

where the set BSEG is defined in (4.67).

Let us observe that the symmetry measure in (4.283) is faithful, in the sense
that it is equal to one if and only if the state ρ is G-Bose symmetric extendible.
This follows from the faithfulness and continuity properties of fidelity.

Theorem 4.11. The promise problem State-G-BSE is QIP(2)-Complete.

1. (α, β)-State-G-BSE is in QIP(2) for all β < α. (It is implicit that the gap between α
and β is larger than an inverse polynomial in the input length.)

2. (1 − ε, ε)-State-G-BSE is QIP(2)-Hard, even when ε decays exponentially in the
input length.

Thus, (α, β)-State-G-BSE is QIP(2)-Complete for all (α, β) such that 0 ≤ β < α ≤ 1.

Proof. To show that the problem is QIP(2)-Complete, we need to demonstrate two
facts: first, that the problem is in QIP(2), and second, that it is QIP(2)-Hard. Let us
begin by proving that the problem is in QIP(2). In our previous work [LRW23, Al-
gorithm 3], we proposed an algorithm to test for G-Bose symmetric extendibility
of a state ρS given a circuit description of unitary that generates a purification of
the state and circuit descriptions of a unitary representation {URS (g)}g∈G of a group
G (see also [LRW23, Figure 6]). By inspection, the algorithm can be conducted
efficiently given two messages exchanged with an all-powerful prover; therefore,
this promise problem is clearly in QIP(2).

To show that the problem is QIP(2)-Hard, we map an arbitrary QIP(2) prob-
lem to a G-BSE problem. Specifically, from the circuit descriptions for a QIP(2)
algorithm, we will identify a state ρS ′ and a unitary representation {VR′S ′(g)}g∈G
corresponding to a G-BSE problem, and we will show how the symmetry-testing
condition

max
σS ′∈BSEG

F(ρS ′ , σS ′) (4.285)
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can be written in terms of the QIP(2) algorithm’s acceptance probability.

To begin, recall that a QIP(2) problem consists of a first verifier circuit U1
S A→S ′R,

a prover circuit PRE→R′E′ , and a second verifier circuit U2
S ′R′→DG, where D is the

decision qubit. (Here and in what follows, we keep implicit the dependence of
the prover’s unitary on the problem input x.) The acceptance probability is given
by

pacc = max
PRE→R′E′

∥∥∥(〈1|D ⊗ IE′G)U2
S ′R′→DGPRE→RE′U1

S A→S ′R |x〉S |0〉A |0〉E
∥∥∥2

2
. (4.286)

Define |ψ〉S ′R B U1
S A→S ′R |x〉S |0〉A, and we identify the aforementioned state ρS ′ as

ρS ′ B TrR[|ψ〉〈ψ|S ′R]. (4.287)

The acceptance probability can then be rewritten as

pacc = max
PRE→R′E′

Tr[(|1〉〈1|D ⊗ IE′G)U2P(|0〉〈0|E ⊗ |ψ〉〈ψ|S ′R)P†(U2)†], (4.288)

where we omitted system labels for brevity. Using the cyclicity of trace, consider
that

pacc = max
PRE→R′E′

Tr[(U2)†(|1〉〈1|D ⊗ IE′G)U2P(|0〉〈0|E ⊗ |ψ〉〈ψ|S ′R)P†]. (4.289)

Motivated by this, we pick the group G to be C2 with unitary representation
{IR′S ′ ,VR′S ′}, where

VR′S ′ B (U2
R′S ′→DG)† (−ZD ⊗ IG) U2

R′S ′→DG, (4.290)

We note that V2
RS = IRS , establishing that this is indeed a representation of C2. The

resulting group projection is then

ΠG
R′S ′ =

1
2

(IR′S ′ + VR′S ′)

=
1
2

(
U2†(ID ⊗ IG)U2 + U2† (−ZD ⊗ IG) U2

)
=

1
2

(
U2† (IDG − (ZD ⊗ IG)) U2

)
= U2†(|1〉〈1|D ⊗ IG)U2, (4.291)

which is precisely the acceptance projection in the first line of (4.289). That is,

pacc = max
PRE→R′E′

Tr[ΠG
R′S ′P(|0〉〈0|E ⊗ |ψ〉〈ψ|S ′R)P†]. (4.292)
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Figure 4.45: Circuit to map an arbitrary QIP(2) computation to a G-Bose symmetric
extendibility test.

Now invoking [LRW23, Theorem III.3], we conclude that

max
PRE→R′E′

Tr[ΠG
R′S ′P(|0〉〈0|E ⊗ |ψ〉〈ψ|S ′R)P†]

= max
PRE→R′E′

∥∥∥ΠG
R′S ′P(|0〉E ⊗ |ψ〉S ′R)

∥∥∥2

2

= max
σS ′∈BSEG

F(ρS ′ , σS ′), (4.293)

where BSEG in this case is

BSEG B

{
σS ′ : ∃ ωR′S ′ ∈ D(HR′S ′),TrR′[ωR′S ′] = σS ′ ,

ωR′S ′ = VR′S ′ωR′S ′ ,

}
. (4.294)

To help visualize the reduction, the G-Bose symmetric extendibility test corre-
sponding to a general QIP(2) algorithm is depicted in Figure 4.45.

Thus, the acceptance probability of the QIP(2) algorithm exactly matches the
symmetry-testing condition of the constructed G-BSE problem. As such, any
QIP(2) problem can be efficiently mapped to a G-BSE problem, proving that the
problem State-G-BSE is QIP(2)-Hard. Along with the fact that the problem lies in
the QIP(2) class, this concludes the proof.

4.6.7 Testing G-Bose symmetric separable extendibility of a state
is QIPEB(2)-Complete

In this section, we introduce the following problem: decide whether a state has a
separable extension that is G-Bose symmetric. We also prove that it is a QIPEB(2)-
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Complete problem.

Problem 4.7 [(α, β)-Sep-Ext-G-Bose-Symmetry]. Let α and β be such that 0 ≤ β < α ≤ 1.
Given is a circuit description of a unitary Uρ

S S ′ that generates a purification of a state ρS ,
as well as circuit descriptions of a unitary representation {URS (g)}g∈G of a group G. Decide
which of the following holds:

Yes: max
ωRS ∈SEP(R:S ),
TrR[ωRS ]=ρS

Tr[ΠG
RSωRS ] ≥ α, (4.295)

No: max
ωRS ∈SEP(R:S ),
TrR[ωRS ]=ρS

Tr[ΠG
RSωRS ] ≤ β, (4.296)

where ΠG
RS is defined in (4.9).

Let us observe that the following equality holds:

max
ωRS ∈SEP(R:S ),
TrR[ωRS ]=ρS

Tr[ΠG
RSωRS ] = max

ωRS ∈SEP(R:S ),
TrR[ωRS ]=ρS ,
σRS ∈B-SymG

F(ωRS , σRS ), (4.297)

where the set B-SymG in this case is defined as

B-SymG B {σRS : σRS = URS (g)σRS , ∀g ∈ G} . (4.298)

The identity in (4.297) follows as a consequence of [LRW23, Theorem 3.1]. Rewrit-
ing the expression in this way allows for a fidelity interpretation of the symmetry
condition, which implies that the symmetry-testing condition in (4.295) is equal
to one if and only if there exists a separable extension of ρS that is Bose-symmetric
according to the unitary representation {URS (g)}g∈G. As such, this is a faithful mea-
sure of G-Bose symmetric separable extendibility.

Theorem 4.12. The promise problem Sep-Ext-G-Bose-Symmetry is QIPEB(2)-Complete.

1. (α, β)-Sep-Ext-G-Bose-Symmetry is in QIPEB(2) for all β < α. (It is implicit that
the gap between α and β is larger than an inverse polynomial in the input length.)

2. (1 − ε, ε)-Sep-Ext-G-Bose-Symmetry is QIPEB(2)-Hard, even when ε decays expo-
nentially in the input length.

Thus, (α, β)-Sep-Ext-G-Bose-Symmetry is QIPEB(2)-Complete for all (α, β) such that 0 ≤
β < α ≤ 1.
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Figure 4.46: QIPEB(2) algorithm to test for G-Bose symmetry of a separable exten-
sion of the state ρS , where the prover’s actions are depicted in the dashed box.
The prover’s channel ES ′→R is entanglement breaking.

Proof. To show that the problem is QIPEB(2)-Complete, we need to demonstrate
two facts: first, that the problem is in QIPEB(2), and second, that it is QIPEB(2)-
Hard. Let us begin by proving that the problem is in QIPEB(2).

The algorithm to estimate the quantity in (4.295) is given in Figure 4.46. The
general form of an entanglement-breaking channel is given by

ES ′→R(·) =
∑
x∈X

Tr[µx
S ′(·)]φ

x
R, (4.299)

as discussed in (2.143). Thus, the acceptance probability of the algorithm for a
fixed channel ES ′→R is given by

Tr[ΠG
RSES ′→R(|ψρ〉〈ψρ|S S ′)]

=
∑
x∈X

Tr[ΠG
RS TrS ′[µx

S ′(|ψ
ρ〉〈ψρ|S S ′)] ⊗ φx

R]

=
∑
x∈X

p(x) Tr[ΠG
RS (φx

R ⊗ ψ
x
S )], (4.300)

where

p(x) B Tr[µx
S ′(|ψ

ρ〉〈ψρ|S S ′)], (4.301)

ψx
S B

1
p(x)

TrS ′[µx
S ′(|ψ

ρ〉〈ψρ|S S ′)]. (4.302)
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Note that ∑
x∈X

p(x)ψx
S =

∑
x∈X

TrS ′[µx
S ′(|ψ

ρ〉〈ψρ|S S ′)]

= TrS ′[|ψρ〉〈ψρ|S S ′]
= ρS . (4.303)

Thus, maximizing over all possible entanglement-breaking channels, the ac-
ceptance probability is given by

max
{(p(x),ψx

S ,φ
x
R)}x

∑
x∈X

p(x) Tr[ΠG
RS (φx

R ⊗ ψ
x
S )] = max

ωRS ∈SEP(R:S )
Tr[ΠG

RSωRS ], (4.304)

with the condition that TrR[ωRS ] =
∑

x p(x)ψx
S = ρS . Since the entire algorithm can

be performed efficiently when augmented by an entanglement-breaking prover,
the problem is in QIPEB(2).

Next, we show that the problem is QIPEB(2)-Hard. To do this, we need to
map a general QIPEB(2) problem to an instance of Sep-Ext-G-Bose-Symmetry; i.e.,
using the circuit descriptions for a general QIPEB(2) algorithm, we need to define
a state ρS and a unitary representation {URS (g)}g∈G.

Consider a general interactive proof system in QIPEB(2) that begins with the
verifier preparing a bipartite pure state ψRS , followed by the system R being sent to
the prover, who subsequently performs an entanglement-breaking channel ER→R′

and sends the R′ register to the verifier. The verifier then performs a unitary
VR′S→DG, measures the decision qubit, and accepts if the outcome |1〉 is observed.
Indeed, the acceptance probability is given by

max
E∈EB

Tr[(|1〉〈1|D ⊗ IG)VR′S→DG(ER→R′(ψRS ))], (4.305)

where VR′S→DG is the unitary channel corresponding to the unitary operator
VR′S→DG and EB denotes the set of entanglement-breaking channels. Following
the reasoning in (4.300), the output of an entanglement-breaking channel can be
written in the form

ER→R′(ψRS ) =
∑

x

p(x)φx
R′ ⊗ ψ

x
S , (4.306)

with the condition that
∑

x p(x)ψx
S = TrR[ψRS ] = ρS . In other words, the output of

the entanglement-breaking channel is a separable extension of the state ρS . Thus,
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the acceptance probability is given by

max
ωR′S ∈SEP(R′:S )

Tr[(|1〉〈1|D ⊗ IG)V(ωR′S )V†] = max
ωR′S ∈SEP(R′:S )

Tr[(V†(|1〉〈1|D ⊗ IG)V)ωR′S ],

(4.307)
subject to the constraint TrR′[ωR′S ] = ρS , where we have used the shorthand V ≡
VR′S→DG. The second inequality results from the cyclicity of trace.

Let us then define the group G to be the cyclic group on two elements C2 =

{I,W} such that W2 = I, where W is simply given by

WR′S B (VRS ′→DG)† (−ZD ⊗ IG) VR′S→DG, (4.308)

We note that W2
R′S = IR′S , establishing that this is indeed a representation of C2.

The resulting group projection is then

ΠG
R′S =

1
2

(IR′S + WR′S )

=
1
2

(
V†(ID ⊗ IG)V + V† (−ZD ⊗ IG) V

)
=

1
2

(
V† (IDG − (ZD ⊗ IG)) V

)
= V†(|1〉〈1|D ⊗ IG)V. (4.309)

Next, we define the state ρS to be

ρS B TrR[ψRS ]. (4.310)

Thus, the symmetry-testing condition of the instance of Sep-Ext-G-Bose-
Symmetry is given by

max
ωR′S ∈SEP(R′:S )

Tr[ΠG
R′SωR′S ] = max

ωR′S ∈SEP(R′:S )
Tr[V†(|1〉〈1|D ⊗ IG)VωR′S ], (4.311)

where the maximization over ωR′S is subject to the constraint that TrR′[ωR′S ] = ρS .
This exactly matches the acceptance probability of the QIPEB(2) problem, es-
tablishing that Sep-Ext-G-Bose-Symmetry is QIPEB(2)-Hard, thus completing the
proof.
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4.6.8 Testing G-Bose symmetric extendibility of the output of a
channel is QIP-Complete

In this section, we show that testing the G-Bose symmetric extendibility (G-BSE)
of the output of a channel state is QIP-Complete.

Problem 4.8 [(α, β)-Channel-G-BSE]. Let α and β be such that 0 ≤ β < α ≤ 1. Given are
descriptions of circuits UNBC′→S ′S that prepare a unitary dilation of a channel

NB→S (·) B TrS ′[UNBC′→S ′S ((·)B ⊗ |0〉〈0|C′)(UNBC′→S ′S )†] (4.312)

and descriptions of a unitary representation {US (g)}g∈G of a group G. Decide which of the
following holds:

Yes: max
ρB∈D(HB),
σS ∈BSEG

F(NB→S (ρB), σS ) ≥ α, (4.313)

No: max
ρB∈D(HB),
σS ∈BSEG

F(NB→S (ρB), σS ) ≤ β, (4.314)

where the set BSEG is defined to be:

BSEG B

{
σS : ∃ ωRS ∈ D(HRS ),TrR[ωRS ] = σS ,

ωRS = URS (g)ωRS , ∀g ∈ G

}
. (4.315)

Let us observe that the symmetry measure in (4.313) is faithful, in the sense
that it is equal to one if and only if there is a channel input state ρB such that the
output state NB→S (ρB) is G-Bose symmetric extendible.

Theorem 4.13. The promise problem Channel-G-BSE is QIP-Complete.

1. (α, β)-Channel-G-BSE is in QIP for all β < α. (It is implicit that the gap between α
and β is larger than an inverse polynomial in the input length.)

2. (1 − ε, ε)-Channel-G-BSE is QIP-Hard, even when ε decays exponentially in the
input length.

Thus, (α, β)-Channel-G-BSE is QIP-Complete for all (α, β) such that 0 ≤ β < α ≤ 1.

Proof. To show that the problem is QIP-Complete, we need to demonstrate two
facts: first, that the problem is in QIP, and second, that it is QIP-Hard. Let us
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begin by proving that the problem is in QIP. In our previous work [LRW23, Al-
gorithm 3], we proposed an algorithm to test for G-Bose Symmetric Extendibility
of a state ρS given a circuit description of unitary that generates a purification of
the state and circuit descriptions of a unitary representation {URS (g)}g∈G of a group
G. By inspection, the algorithm can be executed efficiently given two messages
exchanged with an all-powerful prover. The optimal input state to the channel is
sent by another message of the prover, thus adding up to three messages in total.
As such, the algorithm is clearly in QIP.

To show that the problem is QIP-Hard, we map an arbitrary QIP problem to an
instance (N , {URS (g)}g∈G) of Channel-G-BSE. Since QIP(3) ≡ QIP [KW00], our goal
is to find a correspondence between an arbitrary QIP(3) protocol and a choice of
channel and group, (N , {URS (g)}g∈G). Specifically, from the circuit descriptions for
a QIP(3) algorithm, we will identify a channel NR′′→S ′ and a unitary representa-
tion {VR′S ′(g)}g∈G corresponding to a G-BSE problem, and we will show how the
symmetry-testing condition

max
ρR′′∈D(HR′′ ),
σS ′∈BSEG

F(NR′′→S ′(ρR′′), σS ′) (4.316)

can be written in terms of the QIP(3) algorithm’s acceptance probability.

To begin, recall that an arbitrary QIP(3) problem consists of three messages
exchanged and involves a first prover unitary P1

E′′→R′′E, a first verifier unitary
U1

S AR′′→S ′R, a second prover unitary P2
RE→R′E′ , and a second verifier unitary U2

S ′R′→DG,
where D is the decision qubit. (Here we leave the dependence of the prover uni-
taries on x to be implicit.) The acceptance probability is thus,

pacc = max
P1

E′′→R′′E ,

P2
RE→R′E′

∥∥∥(〈1|D ⊗ IGE′)U2
S ′R′→DGP2

RE→R′E′U
1
S AR′′→S ′RP1

E′′→R′′E |x〉S |0〉A |0〉E′′
∥∥∥2

2
.

(4.317)
Defining the first state after the action of the prover’s unitary P1 to be

|ψ〉R′′E B P1
E′′→R′′E |0〉E′′ , (4.318)

and the isometry
WR′′→S ′R B U1

S AR′′→S ′R |x〉S |0〉A , (4.319)
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the acceptance probability can then be written as

pacc = max
ψR′′E ,P2

RE→R′E′

Tr[(|1〉〈1|D ⊗ IE′G)U2P2WψR′′EW†P2†U2†]

= max
ψR′′E ,P2

RE→R′E′

Tr[U2†(|1〉〈1|D ⊗ IE′G)U2P2WψR′′EW†P2†], (4.320)

where we have used cyclicity of trace in the last line. We can also identify the
aforementioned channel NR′′→S ′ as follows:

NR′′→S ′(·) B TrR[W(·)R′′W†]. (4.321)

Motivated by the expression in (4.320), we pick the group G to be C2 with
unitary representation {IR′S ′ ,VR′S ′}, where

VR′S ′ B (U2
R′S ′→DG)† (−ZD ⊗ IG) U2

R′S ′→DG. (4.322)

We note that V2
RS = IRS , proving that this is indeed a representation of C2. The

resulting group projection is then

ΠG
R′S ′ =

1
2

(IR′S ′ + VR′S ′)

=
1
2

(
U2†(ID ⊗ IG)U2 + U2† (−ZD ⊗ IG) U2

)
=

1
2

(
U2† (IDG − (ZD ⊗ IG)) U2

)
= U2†(|1〉〈1|D ⊗ IG)U2, (4.323)

which is precisely the acceptance projection in (4.320). That is,

pacc = max
ψR′′E ,

P2
RE→R′E′

Tr[ΠG
R′S ′P

2WψR′′EW†P2†] (4.324)

Now invoking [LRW23, Theorem III.3], we conclude that

pacc = max
ψR′′E ,P2

RE→R′E′

Tr[ΠG
R′S ′P

2WψR′′EW†P2†]

= max
ψR′′E ,P2

RE→R′E′

∥∥∥ΠG
R′S ′P

2W |ψ〉R′′E
∥∥∥2

2

= max
ρR′′∈D(HR′′ ),
σS ′∈BSEG

F(NR′′→S ′(ρR′′), σS ′), (4.325)
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Figure 4.47: Circuit to map an arbitrary QIP algorithm to a G-Bose symmetric
extendibility test on the output of a channel.

where in this case BSEG is defined in the same way as in (4.294). To help visualize
the reduction, the G-Bose symmetric extendibility test corresponding to a general
QIP algorithm is depicted in Figure 4.47.

Thus, the acceptance probability of the QIP algorithm now exactly matches the
symmetry-testing condition of the constructed G-BSE problem. As such, any QIP
problem can be efficiently mapped to testing G-BSE of the output of a channel,
proving that the problem Channel-G-BSE is QIP-Hard. Along with the fact that
the problem lies in the QIP class, this concludes the proof.

4.6.9 Testing Hamiltonian symmetry using maximum spectral
norm is in QMA

In this section, we show that testing whether a Hamiltonian is symmetric with
respect to a group representation and the maximum spectral norm is in QMA. In
particular, we consider the following task: given a group G with unitary repre-
sentation {U(g)}g∈G, a time t ∈ R, and a classical description of a local or sparse
Hamiltonian H, estimate the following quantity:

max
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
, (4.326)

where the spectral norm of a matrix A is defined as

‖A‖∞ B sup
|ψ〉∈H

{
‖A |ψ〉‖2 : ‖|ψ〉‖2 = 1

}
. (4.327)
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The quantity in (4.326) is a faithful measure of asymmetry in the following sense:

max
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
= 0 ∀t ∈ (−δ, δ),

⇔ [U(g), e−iHt] = 0 ∀g ∈ G, t ∈ (−δ, δ),
⇔ [U(g),H] = 0 ∀g ∈ G, (4.328)

where δ > 0. The first equivalence follows from faithfulness of the spectral norm,
and the second equivalence follows by taking the derivative of the second line at
t = 0.

Problem 4.9 [Ham-Sym-Max-Spec]. Let α and β be such that 0 ≤ β < α ≤ 2, and fix
t ∈ R. Given are circuit descriptions of a unitary representation {U(g)}g∈G of a group G
and a classical description of a k-local or sparse Hamiltonian H. Decide which of the
following holds:

Yes: max
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
≥ α, (4.329)

No: max
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
≤ β, (4.330)

In what follows, we show that Ham-Sym-Max-Spec is in QMA, and it remains
an interesting open question to determine whether this problem is QMA-Hard or
hard for some other complexity class.

Theorem 4.14. The promise problem Ham-Sym-Max-Spec is in QMA.

Proof. Consider the following steps of a QMA interactive proof (see Figure 4.48):

1. The prover sends a state in registers C and P, with the dimension of C being
equal to |G| and the dimension of P being equal to the dimension of H.

2. The verifier measures the register C and obtains the outcome g ∈ G.

3. The verifier adjoins a qubit C′ in the state |+〉, performs the Hamiltonian
evolution eiHt, the controlled unitary |0〉〈0| ⊗ I + |1〉〈1| ⊗U†(g), the Hamiltonian
evolution e−iHt, and the controlled unitary |0〉〈0| ⊗ I + |1〉〈1| ⊗ U(g).

4. The verifier measures the qubit C′ in the Hadamard basis {|+〉, |−〉} and ac-
cepts if the outcome |−〉 occurs.

As noted in the previous section, there exist multiple methods to realize an ef-
ficient circuit for the Hamiltonian evolutions e−iHt and eiHt (see [CMN+18] and
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Figure 4.48: Circuit depicting a QMA test for Hamiltonian symmetry with re-
spect to a group, where it is understood that the unitary P is implemented by an
all-powerful prover. The final measurement is in the Hadamard basis, and the
algorithm accepts if the |−〉 outcome occurs.

references therein). We also note that there are some similarities, as well as key
differences, between this algorithm and that given in Figure 3 of [PVM21].

Let us now analyze the acceptance probability of this interactive proof. It suf-
fices for the prover to send a pure state, as this maximizes the acceptance proba-
bility. Let us expand a fixed pure state |ψ〉CP of registers C and P as follows:

|ψ〉CP =
∑
g∈G

√
p(g)|g〉C |ψg〉P, (4.331)

where {p(g)}g is a probability distribution and {|ψg〉P}g is a set of states. After the
verifier’s measurement in Step 2, the probability of obtaining outcome g ∈ G is
p(g) and the post-measurement state of register P is |ψg〉P. Conditioned on the
outcome g and defining the unitary W(g, t) ≡ U(g)e−iHtU†(g)eiHt, the acceptance
probability of Steps 3-4 is then given by∥∥∥∥∥∥(〈−|C′ ⊗ IP)

1
√

2
(|0〉C′ |ψg〉P + |1〉C′W(g, t)|ψg〉P)

∥∥∥∥∥∥2

2

=
1
4

∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2
. (4.332)

Thus, for a fixed state |ψ〉CP of the prover, the acceptance probability is given by

1
4

∑
g∈G

p(g)
∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2
, (4.333)

and finally maximizing over all such states leads to the following expression for
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the acceptance probability:

max
|ψ〉CP

1
4

∑
g∈G

p(g)
∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2

=
1
4

max
{p(g)}g,
{|ψg〉P}g

∑
g∈G

p(g)
∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2

=
1
4

max
{p(g)}g

∑
g∈G

p(g) max
{|ψg〉P}g

∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2

=
1
4

max
{p(g)}g

∑
g∈G

p(g) ‖I −W(g, t)‖2∞

=
1
4

max
g∈G
‖I −W(g, t)‖2∞

=
1
4

max
g∈G

∥∥∥I − U(g)e−iHtU†(g)eiHt
∥∥∥2

∞

=
1
4

max
g∈G

∥∥∥e−iHtU(g) − U(g)e−iHt
∥∥∥2

∞

=
1
4

max
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
. (4.334)

The third equality follows from the definition of the spectral norm. The fourth
equality follows because the optimal distribution is a point mass on the largest
value of ‖I −W(g, t)‖2∞. The penultimate equality follows from unitary invariance
of the spectral norm. In light of the above analysis, the best strategy of the prover
is to compute maxg∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
in advance, send the maximizing value of g

in register C, and send the corresponding state that achieves the spectral norm in
register P. As the acceptance probability of this QMA interactive proof is precisely
related to the decision criteria in Problem 4.9, this concludes the proof.

4.6.10 Testing Hamiltonian symmetry using average spectral
norm is in QAM

In this section, we show that testing whether a Hamiltonian is symmetric with
respect to a group representation and the average spectral norm is in QAM. In
particular, we consider the following task: given a group G with unitary repre-
sentation {U(g)}g∈G, a time t ∈ R, and a classical description of a local or sparse
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Hamiltonian H, estimate the following quantity:

1
|G|

∑
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
. (4.335)

This is a faithful measure of symmetry in the following sense:

1
|G|

∑
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
= 0 ∀t ∈ (−δ, δ),

⇔ [U(g), e−iHt] = 0 ∀g ∈ G, t ∈ (−δ, δ),
⇔ [U(g),H] = 0 ∀g ∈ G, (4.336)

where δ > 0. The first equivalence follows from faithfulness of the spectral norm,
and the second equivalence follows by taking the derivative of the second line at
t = 0.

Problem 4.10 [Ham-Sym-Avg-Spec]. Let α and β be such that 0 ≤ β < α ≤ γ, where γ is
defined in (4.200), and fix t ∈ R. Given are circuit descriptions of a unitary representation
{U(g)}g∈G of a group G and a classical description of a k-local or sparse Hamiltonian H.
Decide which of the following holds:

Yes:
1
|G|

∑
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
≥ α, (4.337)

No:
1
|G|

∑
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
≤ β, (4.338)

In what follows, we show that Ham-Sym-Avg-Spec is in QAM, and it remains
an interesting open question to determine whether this problem is QAM-Hard or
hard for some other complexity class.

Theorem 4.15. The promise problem Ham-Sym-Avg-Spec is in QAM.

Proof. Consider the following steps of a QAM interactive proof (see Figure 4.49):

1. The verifier and prover are given a value g ∈ G chosen uniformly at random.

2. The prover prepares a state
∣∣∣ψg

〉
in register P, which depends on the value g

and which has dimension equal to that of H.
3. The verifier adjoins a qubit C′ in the state |+〉, performs the Hamiltonian

evolution eiHt, the controlled unitary |0〉〈0| ⊗ I + |1〉〈1| ⊗U†(g), the Hamiltonian
evolution e−iHt, and the controlled unitary |0〉〈0| ⊗ I + |1〉〈1| ⊗ U(g).
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Figure 4.49: Circuit depicting a QAM test for Hamiltonian symmetry with re-
spect to a group, where it is understood that the unitary P is implemented by an
all-powerful prover. The final measurement is in the Hadamard basis, and the
algorithm accepts if the |−〉 outcome occurs.

4. The verifier measures the qubit C′ in the Hadamard basis {|+〉, |−〉} and ac-
cepts if the outcome |−〉 occurs.

Let us now analyze the acceptance probability of this interactive proof. We
define the set of states {

∣∣∣ψg

〉
= Pg |0〉}g∈G. Conditioned on the value g, the prover’s

state is
∣∣∣ψg

〉
, and defining the unitary W(g, t) ≡ U(g)e−iHtU†(g)eiHt, the acceptance

probability of Steps 3-4 is then given by∥∥∥∥∥∥(〈−|C′ ⊗ IP)
1
√

2
(|0〉C′ |ψg〉P + |1〉C′W(g, t)|ψg〉P)

∥∥∥∥∥∥2

2

=
1
4

∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2
. (4.339)

Thus, for a fixed set {Pg}g of prover unitaries and averaging over the shared uni-
form randomness, the acceptance probability is given by

1
4|G|

∑
g∈G

∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2
. (4.340)

Finally maximizing over all such prover unitaries leads to the following expres-
sion for the acceptance probability:

max
{Pg}g

1
4|G|

∑
g∈G

∥∥∥(I −W(g, t))|ψg〉P

∥∥∥2

2

=
1

4|G|

∑
g∈G

‖I −W(g, t)‖2∞

=
1

4|G|

∑
g∈G

∥∥∥[U(g), e−iHt]
∥∥∥2

∞
, (4.341)
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where the reasoning is the same as that in (4.334). As the acceptance probability
of this QAM interactive proof is precisely related to the decision criteria in Prob-
lem 4.10, this concludes the proof.

4.7 Conclusion

In summary, we have proposed various quantum computational tests of sym-
metry, as well as various notions of symmetry like G-symmetric extendibility
and G-Bose symmetric extendibility, which include previous notions of symme-
try from [MS13,MS14,Wer89a,DPS02,DPS04] as special cases, showing that these
these new notions of symmetry provide a generalization with interesting appli-
cations. These tests have acceptance probabilities equal to various maximum
symmetric fidelities, thus endowing these measures with operational meanings.
We have also established resource theories of asymmetry beyond those proposed
in [MS13], which put the maximum symmetric fidelities on firm ground in a
resource-theoretic sense. Finally, we evaluated the quantum computational tests
on existing quantum computers, by employing a variational algorithm to replace
the role of the prover in a quantum interactive proof.

We have also established the computational complexity of various symmetry-
testing problems. In particular, we showed that the various problems are com-
plete for BQP, QMA, QSZK, QIP(2), QIPEB(2), and QIP, encompassing much of the
known suite of quantum interactive proof models. We proved hardness results by
embedding various circuits involved in a given computation into the preparation
of a state or channel or into a unitary representation of a group. Finally, we in-
troduced two Hamiltonian symmetry-testing problems and proved that they are
contained in QMA and QAM.

Going forward from here, there are several directions to consider:

• Let us observe that several key resources such as entanglement
and distinguishability have been connected to the quantum interac-
tive proof hierarchy, through the findings of [HMW14, GHMW15] and
[KW00, Wat02a, RW05, Wat09d, HMW14, RASW23], respectively. Our work
makes a nontrivial link between this hierarchy and asymmetry, another key
resource. These connections make us wonder whether other resources in
quantum mechanics, such as coherence, magic, athermality, etc. [CG19], can
be linked with the same hierarchy.
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• We are curious whether the two aforementioned Hamiltonian symmetry-
testing problems could be shown to be complete for QMA and QAM, re-
spectively, or complete for some other quantum complexity class of interest.

• Several multipartite separability problems were identified in [PRRW24] and
related to a quantum interactive proof setting in which there is a prover who
performs a measurement, sends the classical outcome to multiple provers,
who then send states to the verifier. One could thus try to find a symmetry-
testing problem that is complete for this class.

• Various quantum algorithms for testing symmetries of channels, measure-
ments, and Lindbladians under the Hilbert–Schmidt norm were proposed
recently in [BRRW23]. One could attempt to show that corresponding
symmetry-testing problems are complete for BQP.

All code and data used to generate these results is available via
the GitHub repository located at https://github.com/Soorya-Rethin/
Testing-Symmetry.
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Chapter 5

Energy

Nature prefers the path of least energy — the quiet equilibrium where all forces
balance. -— Anonymous (or Physics folklore)

This chapter is based on collaborative work with Alexander Wei, Ethan Guo,
Dr. Mark M. Wilde, and Dr. Kristina D. Launey [RGW+24a]. Throughout this
section, ‘we’ refers to all five collaborators.

5.1 Introduction

The atomic nucleus is a quantum many-body system made of nucleons that
are subject to residual strong forces that have no analytical solution. For an A-
particle system, the nuclear problem needs to be solved numerically in the infinite-
dimensional Hilbert space of A particles with Hamiltonians that admit state-of-
the-art nucleon-nucleon (NN) forces, often three-nucleon (3N), and even four-
nucleon (4N) forces. This leads to the so-called scale explosion problem in nu-
clear structure calculations, i.e., the explosive growth in computational resource
demands with increasing number of particles and size of the spaces in which they
reside. Major progress in the development of high-precision inter-nucleon inter-
actions [BvK02, ENG+02, EM03, Epe06, EKM15] along with the utilization of high-
performance computing resources have tremendously advanced nuclear science
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explorations. This has placed ab initio (or from first principles) large-scale simu-
lations at the frontier of physics, including, for example, accurate theoretical pre-
dictions for light muonic atoms [JNDBB13], scattering calculations of interest to
astrophysics and energy applications [ELR+15, HQN19, LMD21], as well as input
to high-precision beta-decay measurements that probe physics beyond the stan-
dard model [SLB+22, B+22].

The situation is even more complicated when one needs accurate descriptions
of nuclear reactions – the dynamics of several nuclei (reaction fragments) that in-
teract, – especially in regions of the nuclear chart where experiments are currently
infeasible. A general approach to reactions, especially suitable for heavier nuclear
systems, is based on identifying few-body degrees, typically the reaction frag-
ments (or clusters) involved in the reaction, and reduce the many-body problem
to a few-body technique [TN09]. This reduction results in effective interactions
(often referred to as optical potentials) between the clusters. Here again, the de-
mand in classical computational resources grows exponentially with the number
of reaction fragments and the range of their interaction.

With a view toward addressing such challenges in the long term by harness-
ing the advantages of quantum computing – as demonstrated for various low-
and high-energy nuclear physics problems (e.g., see [DMH+18, CLB+21, TRA+22,
SBC22, JJMS22, KGL+22, IS23, T+23, W+23, DSS23, PORM+23, BS24]) – in this paper,
we start with the simplest case of two clusters, one of which is a neutron. We pro-
vide, for the first time, solutions of the neutron-nucleus dynamics from quantum
simulations suitable for the far-term error-corrected regime as well as for the noisy
intermediate-scale quantum (NISQ) processors coupled with the noise-resilient
(NR) training method [SKCC20]: this is illustrated for the bound-state physics of
the neutron-alpha (n-4He) optical potential rooted in first principles [BLM+24], as
well as for the lowest 1

2
+ energy in Carbon isotopes calculated through the n+10C,

n+12C, and n+14C dynamics. We note that, in distinction to terminology often
used in quantum computing, “dynamics simulation” or “simulation of (nuclear)
dynamics” refer here to the problem of modeling the nuclear multi-cluster system
using a specific inter-cluster potential.

The present method utilizes the Variational Quantum Eigensolver (VQE)
[PMS+14, CAB+21, BCLK+22] and is based on the pioneering nuclear simulations
of the deuteron on quantum computers, where the potential is given only by a
single matrix element [DMH+18]. In our study, we design a novel quantum al-
gorithm for a two-cluster system and a very general potential, which allows for
versatile applications, including widely used exponential potentials in reaction
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calculations (see, e.g., Ref. [DB10]) and most importantly, optical potentials de-
rived ab initio. We note here that the choice of VQE can be replaced with any other
technique, for example, tensor network warm starting, etc.

In this paper, we provide a generalized, extensible, and strong mathemati-
cal formulation of three mappings to qubits: one-hot, binary, and Gray encod-
ings (see, e.g., [SMK+20]), explore their relative advantages, and illustrate these
for simulations with the above-mentioned potentials. Going beyond the scope
of earlier work that explored specific properties of mappings based on simula-
tions only (e.g., see [SA21]), we provide mathematical proofs of scaling for these
three encodings. Furthermore, the techniques that we use to prove these results
are applicable for general encodings. Based on this, we show that the Gray en-
coding (introduced to nuclear calculations in Ref. [DMMG+21]) allows for an ef-
ficient scaling of the model-space size N (or number of the basis states used) and
is more resource efficient not only for tridiagonal Hamiltonians (K = 1), as sug-
gested in Ref. [SMK+20], but also for band-diagonal Hamiltonians for K < N/2,
where 2K + 1 is the bandwidth of the Hamiltonian. Interestingly, we show that
for bandwidths larger than N, more off-diagonals can be added, if needed for an
increased accuracy, without increasing the complexity of the problem. Another
outcome of this study relates to the efficacy of measurements, which is of key
importance to obtaining acceptable outcomes on quantum devices. In particular,
we introduce a new commutativity scheme called distance-grouped commutativ-
ity (DGC), which is especially useful for band-diagonal matrices. We compare
its performance with the well-known qubit-commutativity (QC) scheme. We lay
out the explicit grouping of Pauli strings and the diagonalizing unitary under the
DGC scheme. We show that the DGC scheme outperforms the QC scheme, at
the cost of a more complex diagonalizing unitary. We note here that the diago-
nalizing unitary turns out to be the GHZ preparation unitary (See Lemma D.16
for the mathematical definition), and these have been used for diagonalization in
quantum simulations [SCLW22, FCP+23].

We note that, in this study, the quantum simulations are reported for the low-
est bound states of two clusters, for which a manageable number of qubits can be
currently used (three or four qubits). Ultimately, the algorithm presented here can
underpin multi-cluster dynamics simulations at low energies, such as those rel-
evant to astrophysical studies, and can be utilized for weakly-bound states (e.g.,
for n+16C and n+18C) and even for isolated low-lying resonances that require so-
lutions in much larger model spaces (larger N)1. Knowledge about the bound-

1Applications of the present quantum algorithm are shown here for the use of har-
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state physics is key, e.g., to the description of deuteron break-up reactions, such
as (d,p) and (d,n) reactions, for which standard distorted-wave Born approxima-
tion methods rely on the physics of the bound states of the proton-nucleus and
neutron-nucleus systems. As another important implication, exploring trade-offs
of band-diagonal and full Hamiltonian matrices for different encodings is critical
for the simplest two-cluster system of two nucleons; namely, this allows quantum
simulations of nuclear structure to handle the complete form of the chiral nucleon-
nucleon (NN) potentials (e.g., see [EM03,Epe06,EKM15]), which are in turn key to
ab initio large-scale simulations of light, medium-mass, and even selected heavy
nuclei.

We provide solutions for various n+C systems using an exponential potential,
and for n+α based on the ab initio optical potential derived in Ref. [BLM+24]. We
find that the quantum simulations are successful in finding the lowest 1

2
+ bound-

state energies. We develop a warm-start algorithm, inspired by perturbation the-
ory, that is particularly useful for band-diagonal Hamiltonians. In this method,
we first simulate the system for a simpler, leading-order, Hamiltonian, and use
the endpoint of the simulation as the start for the full-scale simulation. We find
that this method allows for a quicker convergence to the true energy value.

Our paper is intended to serve interdisciplinary research at the intersection
of nuclear physics and quantum information science, and in some cases includes
details that may be well known in one of the fields but are pedagogical for re-
searchers of the other field: our aim here is to provide a complete framework for
the problem at hand. Our paper is organized as follows. In Sec. 5.2, we introduce
the nuclear problem of solving the neutron-nucleus dynamics and its Hamilto-
nian. In Sec. 5.3, we discuss different encoding methods of mapping the given
Hamiltonian to a form that can be simulated on a quantum computer. The differ-
ent encoding methods we discuss include the one-hot encoding, binary encoding,
and the Gray encoding. In Sec. 5.4, we briefly explain the variational principle,
for completeness of presentation. Since the variational principle depends on the
choice of a trial state, called ansatz, we delineate the different ansatz choices for
the different encodings. In Sec. 5.5, we analyze various advantages between the
different encodings considered, including the number of Pauli terms and the num-
ber of commuting sets, for a most general local potential and its band-diagonal

monic oscillator single-particle basis states, the same square-integrable basis utilized in
Refs. [QN09, DLE+20, BLM+24, SLB+22], while the asymptotics are recovered in an R-matrix tech-
nique [TN09]. Alternatively, one can use the quantum algorithm for a square-nonintegrable basis,
such as the eigenstates of the Woods-Saxon potential as utilized, e.g., in Ref. [MMP19].

244



approximation. As part of our trade-off analysis for the different encodings of
Hamiltonians, we introduce the new DGC measurement scheme to group Pauli
strings into commuting operator sets. For this scheme we provide the explicit di-
agonalizing unitary and an analysis of the number of commuting sets. In Sec. 5.6,
we provide quantum simulations for different encodings and nuclear systems, in-
cluding comparisons of the different commuting sets. We discuss the results and
challenges for weakly bound states.

5.2 Problem description

A many-body “configuration interaction" (CI) method (often called the shell
model in nuclear physics [BG77, Sha98, BNV13]) solves the many-body
Schrödinger equation for A particles:

HΨ(~r1,~r2, . . . ,~rA) = EΨ(~r1,~r2, . . . ,~rA), (5.1)

for which the interaction and basis configurations are adopted as follows. The
intrinsic non-relativistic nuclear and Coulomb interaction Hamiltonian is defined
as

H = Trel + VNN + V3N + · · · + VCoulomb, (5.2)

where Trel = 1
A

∑
i< j

(~pi−~p j)2

2mN
is the relative kinetic energy (mN is the nucleon mass),

VNN =
∑A

i< j(VNN)i j is the nucleon-nucleon (NN) interaction (and possibly, V3N =∑A
i< j<k(VNNN)i jk, V4N, . . . interactions), and VCoulomb is the Coulomb interaction be-

tween the protons. The Hamiltonian may also include higher-order electromag-
netic interactions, such as magnetic dipole-dipole terms.

A complete orthonormal basis {ψi}i is adopted, such that the expan-
sion Ψ(~r1,~r2, . . . ,~rA) in terms of unknown coefficients ck, Ψ(~r1,~r2, . . . ,~rA) =∑

k ckψk(~r1,~r2, . . . ,~rA), renders Eq. (5.1) into a matrix eigenvalue equation:∑
k′

Hkk′ck′ = Eck, (5.3)

where the many-particle Hamiltonian matrix elements Hkk′ = 〈ψk|H|ψk′〉 are in
general complex and are calculated for the given interaction Eq. (5.2). Typi-
cally, the basis is a finite set of antisymmetrized products of single-particle states
(Slater determinants), referred to as a “model space". In this study, we use the
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single-particle states of a three-dimensional spherical harmonic oscillator (HO),
φnr(` 1

2 ) jmtz(~r), where nr is the radial quantum number, the orbital angular momen-
tum ` and spin-1

2 are coupled to the total angular momentum j, and tz distin-
guishes between protons and neutrons (we use the convention of HO wavefunc-
tions that are positive at infinity). Such a basis allows for preservation of transla-
tional invariance of the nuclear self-bound system and provides solutions in terms
of single-particle wave functions that are analytically known. With larger model
spaces utilized in the shell-model theory, the eigensolutions converge to the exact
ones.

To describe the neutron-nucleus (NA) dynamics, e.g., for n-α, where α (with
A = 4 particles) is in its ground state

∣∣∣Ψ(A=4)
0

〉
with energy E(4)

0 , one can deduce an
effective non-local interaction Ṽ(r, r′) between the neutron and the four-body sys-
tem using the Green’s function approach [BLM+24], where r (and r′) is the relative
distance between the two clusters before (and after) scattering. This is based on
solutions of the five-body system, that is, all states

∣∣∣Ψ(5)
k

〉
with their energy E(5)

k ,

along with their single-particle overlaps uk(~r) =
〈
Ψ

(5)
k

∣∣∣ a†
~r

∣∣∣Ψ(4)
0

〉
, where a†

~r creates a
single particle at distance ~r. This Ṽ(r, r′) potential, which can be readily derived
in the ab initio framework (see Ref. [BLM+24] for n-α), can be rendered into an
equivalent local form V(r) according to Eq. (31) of Ref. [RDH+17],

V(r)u(r) =

∫
dr′ r′2 Ṽ(r, r′) u(r′), (5.4)

where u(r) is in units of fm−3/2 and V(r) is in units of MeV. We note that for bound
states and resonances for which only the elastic channel is open, the potentials are
real, except on the poles, which can be numerically avoided through the principal
value theorem as shown in Ref. [BLM+24]; while in this study, we do not need the
imaginary part of the Ṽ(r, r′) optical potential for the bound-state simulations at
hand, the generalization to complex matrices is straightforward and feasible. The
potential energy V(r) enters into the two-body Schrödinger equation, as described
next.

Let ~r1 and ~p1 be the position and momentum vector of the nucleus, and let
~r2 and ~p2 be the position and momentum vector of the neutron (or any reaction
fragment). Thus, the Hamiltonian of the A + 1 nuclear system is given by

H̃ =
p2

1

2m1
+

p2
2

2m2
+ V(|~r1 − ~r2|), (5.5)
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where m1 is the mass of the nucleus and m2 is the mass of the neutron. Since
we are interested in the relative motion of the projectile (the neutron) relative to
the target (nucleus), we make a transformation to the center-of-mass coordinate,
~R = m1 ~r1+m2 ~r2

m1+m2
, and relative coordinate, ~r = ~r1 − ~r2:

H̃ =
P2

2M
+

p2

2µ
+ V(r), with H =

p2

2µ
+ V(r), (5.6)

where M = m1 + m2 is the total mass, µ = m1m2
m1+m2

is the reduced mass (usually
reported in terms of the nucleon mass mN and the mass numbers of the target A
and projectile a as µ = Aa

A+amN), and we use that ~P = ~p1 + ~p2 and ~p =
m2 ~p1−m1 ~p2

m1+m2
.

The term P2

2M represents the kinetic energy of the centre of mass. Since [P, p] = 0
and [P, r] = 0, this term can be dealt with independently. Thus, in the center-
of-mass reference frame, we need to solve Eq. (5.3), where T =

p2

2µ is the relative
kinetic energy and V(r) is the potential energy or the effective neutron-nucleus
interaction. We focus on the 2S 1

2
partial wave (following the notation 2s+1`J): α (or

an even-even Carbon isotope) is in a 0+ ground state, the relative orbital angular
momentum is ` = 0, the spin of the neutron is s = 1/2, yielding total angular
momentum J = 1/2 (and since the projectile is a neutron, there is no Coulomb
interaction). For this channel (and any positive-parity channel), the most general
central potential can be expressed as

V(r) =

∞∑
k=0

vkr2k, (5.7)

where the coefficients vk are taken to be real for all k in this work, since we are in-
terested in the bound-state physics. To represent this Hamiltonian on a quantum
computer, we use a discrete-variable representation in the harmonic-oscillator ba-
sis, for which the radial wave functions are known analytically. In this basis, the
Hamiltonian is an infinite-dimensional matrix. However, in order to perform sim-
ulations, we truncate the matrix to an N × N matrix, called HN (retaining the nota-
tions of Ref. [DMH+18]). As the size N of the matrix increases, the approximation
to the true Hamiltonian becomes more accurate. Expanding in this basis,

HN B
N−1∑

nr ,n′r=0

〈n′r|T + V |nr〉|n′r〉〈nr|, (5.8)

where nr denotes a relative harmonic oscillator radial node number. The matrix
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elements of T for every ` are given by

〈n′r`|T |nr`〉 B
~ω

2

[(
2nr +

3
2

)
δn′r ,nr

−

√(
nr −

`

2

)(
nr +

` + 1
2

)
δn′r ,nr−1 −

√(
nr −

` − 2
2

)(
nr +

` + 3
2

)
δn′r ,nr+1

]
, (5.9)

where in Ref. [DMH+18] and in this paper we use ` = 0 (hence, we will omit the
` notation henceforth). The matrix representation of T is tridiagonal; i.e., the only
non-zero elements are the main diagonal and one diagonal each above and below
it.

The matrix elements of V are given as

〈n′r|V |nr〉 =

∞∑
k=0

vk〈n′r|r
2k|nr〉. (5.10)

To calculate the matrix elements of r2k, we use a recursive approach,

〈n′r|r
2k|nr〉 =

∞∑
n′′r =0

〈n′r|r
2k−2|n′′r 〉〈n

′′
r |r

2|nr〉, (5.11)

with the base case for every ` being

〈n′r`|r
2|nr`〉 B b2

s

[(
2nr +

3
2

)
δn′r ,nr

+

√(
nr −

`

2

)(
nr +

` + 1
2

)
δn′r ,nr−1 +

√(
nr −

` − 2
2

)(
nr +

` + 3
2

)
δn′r ,nr+1

]
, (5.12)

where the oscillator length is defined in terms of the reduced mass and ~ω. Also,

bs B
√
~
µω

(and ` = 0 is used in this study).

A schematic of the matrices of this problem description is given in Fig. 5.1b,
as compared to the one used in Ref. [DMH+18] with a single matrix element
(Fig. 5.1a).

In many cases, it is advantageous to approximate, to a very good degree, the
neutron-nucleus potential by an exponential form:

V(r) ≈ VE(r) = V0 exp
(
−c(r/bs)2

)
. (5.13)
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(a)

(b)

(c)

Figure 5.1: The kinetic and potential energy matrices: (a) for the contact potential
used in Refs. [DMH+18, DMMG+21], (b) for the complete potential V(r), and (c)
for the truncated potential VK(r) =

∑K
k=0 vkr2k used in this work.
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Expanding the potential as a Taylor series around r = 0 leads to

VE(r) = V0

∞∑
k=0

(−1)kck

k!

(
r
bs

)2k

. (5.14)

Finally, for the quantum simulations, we set an upper truncation parameter K
for the number of terms in the expansion. Therefore, the potential is given by

〈n′r|VK |nr〉 =

K∑
k=0

vk〈n′r|r
2k|nr〉, (5.15)

with vk = V0(−1)kck/(k!b2k
s ) in the case of the exponential approximation VE(r) of

Eq. (5.13). We note that the matrix representation of r2 is tridiagonal and in gen-
eral, the matrix representation of r2K is (2K + 1)-diagonal. A schematic of the
truncated matrices of this problem description suitable for quantum simulations
is given in Fig. 5.1c.

The quantum computational simulations of nuclear systems of Ref. [DMH+18,
DMMG+21] have used a contact potential for ` = 0, or

〈
n′r

∣∣∣ V |nr〉 = V0δnr ,n′rδnr ,0

(Fig. 5.1a). In this work, the Hamiltonian is generalized for any band-diagonal to
full matrix and can now accommodate a general central potential, such as expo-
nential Gaussian-like potentials using Eq. (5.13) (e.g., [DB10]), along with ab initio
inter-cluster potentials (as those derived in Ref. [BLM+24]) and the central part
of chiral NN potentials using Eq. (5.7). In general, chiral NN potentials, such as
in Refs. [EM03, Epe06, EKM15], used in ab initio nuclear calculations require, in
addition, spin and isospin degrees of freedom α = nr(` 1

2 ) jmtz, as described above.
Including the additional spin-isospin quantum numbers leads to a larger set of
basis states, but nonetheless, in the present framework this is straightforward by
generalizing Eq. (5.8) to

H =
∑
α,α′

〈α′|T + V |α〉|α′〉〈α|, (5.16)

where 〈α′|V |α〉 are known matrix elements for any chiral NN potential and the
enumerating index α replaces nr in the mappings to qubits discussed next. Im-
portantly, physically relevant potentials with a comparatively soft core or widely
used potentials renormalized using, e.g., the Similarity Renormalization Group
(SRG) technique [BFP07], are band-diagonal as a result of the decoupling of low-
and high-momentum configurations. Hence, the advantages found in this study
as a function of the bandwidth 2K + 1 directly generalize to the complete form of
the chiral NN potentials and their routinely used band-diagonal structure.
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5.3 Mapping onto a quantum computer

In the current form, the Hamiltonian from Eq. (5.8) is given in terms of number
operators of the form |m〉〈m| and step-i ladder operators of the form |m〉〈m − i| and
|m〉〈m + i| for i ∈ {1, . . . ,K} (using the notation of Ref. [DMMG+21]). To find the
bound-state energy of this Hamiltonian, we first need to map these operators into
Pauli strings.

Mappings from operators in the Fock space to Pauli strings are called encodings.
Multiple encodings can be found in existing literature, for example, the one-hot
encoding (OH), the Bravyi-Kitaev encoding, the Verstraete-Cirac encoding, the
binary encoding, and the Gray encoding (see, e.g., [SMK+20, DMMG+21, VC05].
In addition, there has been substantial work on using qudits (higher dimensional
systems) rather than qubits, which has been shown to provide some advantage in
specific scenarios [IRS23,VENN24, BRS+21]. In this work, we focus on three qubit
encodings - OH, binary, and Gray - and analyze various properties and trade-offs.

To provide an illustrative example, for each encoding above, we show the ex-
plicit Pauli terms for the N = 4,K = 2 Hamiltonian with the exponential potential
in Eq. (5.13) with parameters

V0 = −2.79 MeV, c = 0.05, ~ω = 15.95 MeV, (5.17)

for the case of n+16C with reduced mass µ = 16
17mN (here we use mN = 938.272029

MeV for both protons and neutrons). The Hamiltonians for the different encod-
ings can be found in their respective sections below.

We note that the development for the ladder operators and step-1 operators
follows directly from [DMMG+21]. We generalize these results to step-k operators,
for k > 1, in this section.

One-hot encoding

For fixed N, the one-hot encoding maps the number and ladder operators to Pauli
strings on N qubits. The Fock basis states are mapped as follows:

|m〉 → |q0q1 . . . qN−1〉 , (5.18)
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for m ∈ {0, . . . ,N − 1}, where qm = 1 and all other bits are zero. For example, for
N = 4, the states are mapped as

|0〉 → |1000〉,
|1〉 → |0100〉,
|2〉 → |0010〉,
|3〉 → |0001〉.

(5.19)

Next, we define the number operators and ladder operators. The number op-
erator |m〉〈m|maps |m〉 to itself and maps all other basis states to 0:

(|m〉〈m|) |m′〉 = δm,m′ |m〉 . (5.20)

Thus, in the encoded basis, the number operators are mapped to

|m〉〈m| → |1〉〈1|m B
1
2

(Im − Zm), (5.21)

where the subscript m indicates the qubit on which the operator acts, that is, e.g.,
Z2 = I ⊗ I ⊗ Z ⊗ I ⊗ · · · ⊗ I.

Next, the action of the ladder operator |m〉〈m ± i| on the number states is as
follows:

(|m〉〈m ± i|) |m′〉 = δm±i,m′ |m〉 . (5.22)

In this encoded basis, this action involves flipping the (m ± i) qubit to 0 and the m
qubit to 1:

|m〉〈m ± i| → |1〉〈0|m ⊗ |0〉〈1|m±i

=
1
2

(Xm − iYm) ⊗
1
2

(Xm±i + iYm±i)

=
1
4

(XmXm±i + iXmYm±i − iYmXm±i + YmYm±i). (5.23)

We note that these ladder operators always occur in pairs due to the Hermiticity
of the Hamiltonian. Thus,

|m〉〈m ± i| + |m ± i〉〈m| =
1
2

(XmXm±i + YmYm±i). (5.24)

The rest of the operators can be constructed similarly. The list of all operators for
N = 4 can be found in Appendix D.2.
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Substituting the above defined number and ladder operators into Eq. (5.8), we
find the representation of HN,K in the one-hot encoding to be

HN,K =
1
2

N−1∑
m=0

〈m|H|m〉(Im − Zm) +
1
2

N−1∑
m=0

max(K,1)∑
k=1

〈m + k|H|m〉(XmXm+k + YmYm+k). (5.25)

The upper limit of the k summation is max(K, 1) due to the fact that even if K = 0,
the first off-diagonal term in the Hamiltonian is non-zero as a result of the kinetic
energy having two off-diagonal terms. Note that, to preserve the size of the matrix
to be N, the summation over k terminates if m + k > N − 1. Thus, in the encoded
one-hot basis, if K > 1, the resulting matrix is (2K + 1)-diagonal.

For the example under consideration in Eq. (5.17), the encoded Hamiltonian is
given by

H4,2 = 67.117 IIII − 4.674 IIIZ − 12.751 IIZI − 20.812 IZII − 28.880 ZIII
− 4.814 IIXX − 4.814 IIYY − 8.801 IXXI − 8.801 IYYI − 12.772 XXII
− 12.772 YYII − 0.004 IXIX − 0.004 IYIY − 0.014 XIXI − 0.014 YIYI, (5.26)

where we have truncated the coefficients to three decimal places.

Remark 5.1. The Jordan–Wigner transformation is a mapping from fermionic operators
to Pauli operators of the form:

a†m →
1
2

m−1∏
j=0

Z j

 (Xm − iYm) (5.27)

am →
1
2

m−1∏
j=0

Z j

 (Xm + iYm). (5.28)

We note that the Jordan–Wigner transformation and the one-hot encoding do not map
a fermionic operator to the same Pauli string. The Jordan–Wigner transformation results
in the following mapping:

a†mam+i + a†m+iam →
1
2

(
XmZXm+i + YmZYm+i

)
, (5.29)

where Z ≡ Zm+1⊗ · · ·⊗Zm+i−1. On the other hand, the one-hot encoding results in the map:

|m〉〈m + i| + |m + i〉〈m| →
1
2

(XmXm+i + YmYm+i) . (5.30)
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While the operators in Eqs. (5.29) and (5.30) in general act differently, their action
is identical on the set of encoded basis states given in Eq. (5.19). Thus, if we restrict the
states to be superpositions of the encoded basis states only, these operators can be used
interchangeably.

Binary encoding

For fixed N, the binary encoding maps the number and ladder operators to Pauli
strings on n = dlog2(N)e qubits. For simplicity, we restrict N to be a power of two,
in which case the encoded basis set is exactly of size n = log2(N). The Fock basis
states are mapped as follows:

|m〉 → |q0q1 . . . qn−1〉 , (5.31)

for m ∈ {0, . . . ,N − 1}, where the bitstring q = q0q1 . . . qn−1 is the binary represen-
tation of m, denoted by bm, on n qubits. For the case of N = 8, the encoded basis
consists of three qubits and is given by

|0〉 → |000〉,
|1〉 → |001〉,
|2〉 → |010〉,
|3〉 → |011〉,
|4〉 → |100〉,
|5〉 → |101〉,
|6〉 → |110〉,
|7〉 → |111〉.

Thus, the binary basis Bn, on n = log2(N) qubits, is a list of N basis elements:

Bn = (b0, b1, . . . , b2n−1), (5.32)

where bm is the binary representation of the integer m.

Next, let us consider how the number and ladder operators map. To this end,
let us establish some notation for the following operators:

|m + k〉〈m| → Bk
m. (5.33)
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The number operators |m〉〈m|map to B0
m, which are defined as

|m〉〈m| → B0
m B |bm〉〈bm|

= Pbm,0
0 ⊗ Pbm,1

1 ⊗ · · · ⊗ Pbm,n−1
n−1

=

n−1⊗
i=0

Pbm,i
i , (5.34)

where bm,i denotes bit i of bm and the operators P0 and P1 are defined as

P0 B |0〉〈0| =
1
2

(I + Z),

P1 B |1〉〈1| =
1
2

(I − Z).
(5.35)

For example, the number operator |6〉〈6| is mapped to

|6〉〈6| → B0
6 = P1

0 ⊗ P1
1 ⊗ P0

2

= |1〉〈1|0 ⊗ |1〉〈1|1 ⊗ |0〉〈0|2. (5.36)

In a similar fashion, the step-1 ladder operators are mapped as follows:

|m + 1〉〈m| → B1
m B

n−1⊗
i=0

|bm+1,i〉〈bm,i|. (5.37)

For example, the ladder operator

|4〉〈3| → B1
3 = |1〉〈0|0 ⊗ |0〉〈1|1 ⊗ |0〉〈1|2, (5.38)

as |3〉 and |4〉 are mapped to |011〉 and |100〉, respectively.

Step-k ladder operators for k > 1 are defined recursively in terms of step-1
ladder operators:

|m + k〉〈m| → Bk
m B B1

m+k−1Bk−1
m . (5.39)

The list of all operators for N = 4 can be found in Appendix D.2.

Thus, substituting for the number and ladder operators in Eq. (5.8), we find
the representation of HN,K in the binary encoding to be

HN,K =

N−1∑
m=0

〈m|H|m〉B0
m +

N−1∑
m=0

max(1,K)∑
k=1

〈m + k|H|m〉(Bk
m + (Bk

m)†). (5.40)
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Note that the summation over i terminates if m + k > N − 1.

For the example under consideration Eq. (5.17), the encoded Hamiltonian is
given by

H4,2 = 33.556 II − 8.073 ZI − 16.134 IZ − 0.004 ZZ − 0.014 IX
+ 7.959 XZ − 0.006ZX − 17.586 XI − 8.801 XX − 8.801 YY. (5.41)

Gray encoding

For a fixed N, the Gray encoding maps the number and ladder operators to Pauli
strings on n = dlog2(N)e qubits. For simplicity, we restrict N to be a power of two,
in which case the encoded basis set is exactly of size n = log2(N). We first define
the Gray basis on n bits, Gn, as a list of 2n basis elements:

Gn = (g0, g1, . . . , g2n−1), (5.42)

where each gi = (gi,0, gi,1, . . . gi,L−1) is a bitstring of length n. The only characteristic
of a Gray encoding is that each bitstring entry gi differs from its neighbor at a
single bit. Thus, for a given n, there are multiple possible Gray codes. In this
work, drawing inspiration from Ref. [DMMG+21], we use a binary reflective Gray
code on n bits. Such a code is defined recursively as follows:

Gn = (Gn−1 · 0,Gn−1 · 1), (5.43)

where Gn is the Gray code on n bits with the entries in reverse order, and X · y
is the list of entries of X with y appended at the end. For example, given that
G2 = (00, 10, 11, 01), we can construct G3 as follows:

G3 = (G2 · 0,G2 · 1)

= ((00, 10, 11, 01) · 0, (00, 10, 11, 01) · 1)
= (000, 100, 110, 010, 011, 111, 101, 001). (5.44)

Thus, for a fixed N, the Fock basis states are mapped to the corresponding
entry in a Gray basis Gn, where n = log2(N):

|m〉 → |q0q1 . . . qn−1〉 , (5.45)

for m ∈ {0, . . . ,N − 1}, where the bitstring q = q0q1 · · · qn−1 is the mth entry in the
Gray basis gm. For example, for N = 8, the encoded basis is made of three qubits:
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|0〉 → |000〉,
|1〉 → |100〉,
|2〉 → |110〉,
|3〉 → |010〉,
|4〉 → |011〉,
|5〉 → |111〉,
|6〉 → |101〉,
|7〉 → |001〉.

Next, let us consider how the number and ladder operators map. To this end,
let us define the following operators:

|m + k〉〈m| → Gk
m. (5.46)

The number operator |m〉〈m| is mapped to G0
m, which is defined as

|m〉〈m| → G0
m B

n−1⊗
i=0

Pgm,i
i . (5.47)

To define the step-1 ladder operators, we use a similar construction as in the pre-
vious section:

|m + 1〉〈m| → G1
m B

n−1⊗
i=0

|gm+1,i〉〈gm,i|. (5.48)

For example, the ladder operator connecting the basis elements |2〉 and |3〉 is given
by

|3〉〈2| → G1
2 = |0〉〈1|0 ⊗ P1

1 ⊗ P0
2, (5.49)

since the |3〉 and |2〉 basis elements differ on the first bit and the other two bits are
in the state |10〉. However, since the Hamiltonian is Hermitian, both the ladder-1
up and down operators are scaled with the same coefficient. Thus,

G1
2 + (G1

2)† = X0 ⊗ P1
1 ⊗ P0

2. (5.50)

We then go on to define the step-i ladder operators recursively with the step-1
ladder operators being the base case:

|m + i〉〈m| → Gi
m

B (|m + i〉〈m + i − 1|)(|m + i − 1〉〈m|), (5.51)
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where the ladder operators in the first parenthesis are defined as above. Next, we
add an extra term that leads to the recursive definition needed. For example,

|4〉〈1| = (|4〉〈3|)(|3〉〈1|)
= (|4〉〈3| + |3〉〈4|)(|3〉〈1|)

= (P0
0 ⊗ P1

1 ⊗ X2)(|3〉〈1|), (5.52)

where |3〉〈1| is defined similarly. The list of all operators for N = 4 can be found in
Appendix D.2.

Thus, substituting for the number and ladder operators in Eq. (5.8), we find the
representation of HN in a Gray encoding with the potential truncation parameter
set to K:

HN,K =

N−1∑
m=0

〈m|H|m〉G0
m +

N−1∑
m=0

max(K,1)∑
k=1

〈m + k|H|m〉(Gk
m + (Gk

m)†). (5.53)

Note that the summation over k terminates if m + k > N − 1.

For the example under consideration Eq. (5.17), the encoded Hamiltonian is
given by

H4,2 = 33.556 II − 16.133 ZI − 0.004 IZ − 8.073 ZZ − 17.586 IX
+ 7.959 ZX + 8.801XZ − 8.801 XI − 0.014 XX − 0.006 YY. (5.54)

5.4 Lowest-state energy computation by variational quantum
eigensolver

5.4.1 Variational principle

For completeness, we summarize the variational principle that underpins the
Variational Quantum Eigensolver (VQE). Given a Hamiltonian, the minimum
energy eigenstate is called the ground state

∣∣∣ψg

〉
and its energy Eg is called the

ground-state energy2. More precisely, given a Hamiltonian H, the ground-state

2We note that for a model space restricted to a given total angular momentum J (spin) and
parity π of the nucleus, the minimum energy eigenstate provides the lowest state for the given Jπ

and coincides with the ground state only if the ground state has the same spin-parity. For example,
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energy and the ground state are defined as:

Eg B min
|ψ〉
〈ψ|H|ψ〉,∣∣∣ψg

〉
B argmin

|ψ〉

〈ψ|H|ψ〉.
(5.55)

To estimate the ground-state energy (lowest Jπ state energy), we use a param-
eterized quantum circuit to attempt achieve the minimum. As discussed in Sec-
tion 2.5, the loss function for a problem is defined in terms of the ansatz and the
observable O. In this problem, the observable O is the Hamiltonian H, and the loss
is relabelled as E(θ), where θ are the parameters of the ansatz of choice. Thus,

Eθ = 〈0|U†(θ)HU(θ) |0〉

= 〈ψ(θ)|H |ψ(θ)〉 ≥ 〈ψg|H
∣∣∣ψg

〉
= Eg. (5.56)

Since the inequality holds for every value θ, minimizing over every θ provides an
upper bound on the true ground-state energy:

Eg ≤ min
θ

Eθ, (5.57)

where the equality is achieved is the ansatz is fully expressive (See Section 2.5.1).

In this work, we use the Hamiltonian HN,K described in Sec. 5.2, with trunca-
tion parameter N for the size of the matrix and K for the potential (referred to as
hyperparameters). The choice of the potential is either a general central potential
deduced ab initio Eq. (5.7) or an exponential potential Eq. (5.13).

5.4.2 Ansatz description

The choice of ansatz depends on the encoding scheme used. The structure of the
ansatz chosen should ideally be able to express all possible combinations of the
encoded basis states. A general hardware-efficient ansatz can be used [KMT+17],
but the symmetry and structure of the Hamiltonian can influence and direct the
ansatz definition.

in the present study of Carbon isotopes, the lowest 1
2

+ state is the ground state only for 15C (the
composite system for n+14C) and 19C (the composite system for n+18C), while the other Carbon
isotopes under consideration have a ground state of different spin-parity.
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Figure 5.2: Recursive circuit ansatz to generate the superposition of the one-hot
basis states. The input to the circuit is |0〉⊗N , and θi denotes the Ry(2θi) = exp (−iθiYi)
rotation gate.

Since the Hamiltonian is purely real, the eigenstates must be fully real. In con-
junction with the fact that Hermitian matrices have real eigenvalues, this means
that the Hamiltonian is diagonalized by an orthogonal transformation, and not a
general unitary transformation. Thus, the ansatz unitary generates a real super-
position of the basis states.

One-hot ansatz

For a given N, the ansatz choice for the one-hot encoding creates a real-coefficient
superposition of the basis states. A pure state for an N-qubit one-hot basis with
real coefficients can be expressed using generalized spherical coordinates. For
example, with N = 4,

|ψ(θ)〉 = cos θ1 |0001〉 + sin θ1 cos θ2 |0010〉+
sin θ1 sin θ2 cos θ3 |0100〉 + sin θ1 sin θ2 sin θ3 |1000〉 . (5.58)

Thus, for a truncation parameter N, the state is parameterized by N−1 parameters.
The encoded state can be generated recursively using Ry rotation gates and CNOT
gates, as seen in Fig. 5.2.
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Figure 5.3: Circuit ansatz to generate a parameterized real superposition of all
basis states. The input to the circuit is |0〉⊗n, where n = log2(N). Each layer (marked
with dotted lines) is repeated L times. Thus, the total number of parameters is nL.

Binary and Gray ansatz

In these encodings, we make use of the entire space spanned by the encoded ba-
sis states. This enables the use of a general hardware-efficient ansatz [KMT+17].
However, from the argument above, we restrict this ansatz to create real superpo-
sitions of the basis states. This can be done with Ry rotation gates and CNOT as
the entangling gate. The ansatz is build up using multiple layers, each having a
set of Y-rotations and entangling gates (see Fig. 5.3). The number of layers L is a
hyperparameter that needs to be chosen such that the ansatz is expressive enough
without increasing the number of parameters too much.

5.5 Encoding techniques and trade-offs

In this section, we explore the various trade-offs between the encoding techniques.
Important parameters for any simulation include the number of Pauli terms in
the encoded Hamiltonian, the number of commuting sets, etc. A comprehensive
analysis for a contact potential, or

〈
n′r

∣∣∣ V |nr〉 = V0δnr ,n′rδnr ,0 (see Fig. 5.1a), can be
found in Ref. [DMMG+21]. We generalize these results for any band-diagonal
to full Hamiltonian matrix needed to accommodate a general central potential,
including exponential Gaussian-like potentials, ab initio inter-cluster potentials,
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and the central part of any chiral NN potential for ab initio nuclear calculations.
Furthermore, we provide new insights and we discuss open research directions
proposed in Ref. [DMMG+21].

We note that, in the present study, the Hamiltonian for K = 0 (diagonal poten-
tial) is tridiagonal due to the kinetic energy term. As a result, the entries for K = 1
are used for K = 0. On the other hand, the most general results for a Hamiltonian
matrix of 2K + 1 bandwidth (that permits a diagonal matrix) are summarized in
Table 5.1 for the one-hot encoding, Table 5.2 for the binary encoding and Table 5.3
for the Gray encoding.

5.5.1 Number of Pauli terms

One-hot encoding

As seen in Eq. (5.25), the encoded Hamiltonian for truncation parameters N,K is
given by

HN,K =
1
2

N−1∑
m=0

〈m|H|m〉(Im − Zm) +
1
2

N−1∑
m=0

K∑
k=1

〈m + k|H|m〉(XmXm+k + YmYm+k), (5.59)

with the k summation terminating when m + k > N − 1. The above equation is true
for K ≥ 1; the case for K = 0 is the same as K = 1, since the kinetic energy term is
tridiagonal. This results from the truncation of the matrix to size N × N.

In the first summation, the identity operator (I⊗N) and the N individual Z oper-
ators give a total of N + 1 Pauli terms (e.g., for three qubits, the terms are III, ZII,
IZI, and IIZ). For the second term, we split the m summation into two parts: one
with m < N − K and m ≥ N − K. In the first part, each k summation goes from 1 to
K, contributing 2K terms. Thus, this part adds a total of 2K(N − K) terms. In the
second part, the k summation is truncated before it reaches K. This contributes a
total of 2[(K − 1) + (K − 2) + . . . + 1]. Thus, the total of the number of Pauli terms is∣∣∣HN,K

∣∣∣ = 1 + N + 2NK − K(K + 1), (5.60)

as depicted in Fig. 5.4.

For the example of N = 4 and K = 2, we see that the number of terms is 15,
confirmed by (5.26). Note that each of these terms acts on N qubits. We note that
for K > N/2, we see that the number of Pauli terms is O(N2).
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full) Hamiltonian matrix. Note that in the one-hot encoding, each term acts on
N qubits, while in the binary and Gray encodings, each term acts on n = log2(N)
qubits.

Binary and Gray encoding

As seen in Eqs. (5.40) and (5.53), the encoded Hamiltonian for truncation parame-
ters N,K is given by

HN,K =

N−1∑
m=0

〈m|H|m〉L0
m +

N−1∑
m=0

K∑
k=1

〈m + k|H|m〉(Lk
m + (Lk

m)†), (5.61)
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HN,K
One-hot

0 ≤ K ≤ N

Qubits N

Pauli
Terms 1 + N + 2NK − K(K + 1)

QC Sets 3

Ansatz 2 one-qubit gates + (2N − 3)
two-qubit gates

Table 5.1: Number of qubits, Pauli terms, and qubit-wise commuting sets for the
one-hot code, for a general Hamiltonian matrix of 2K+1 bandwidth. In the present
study, the Hamiltonian for K = 0 (diagonal potential) is tridiagonal because of the
kinetic energy term, in which case the entries for K = 1 should be used. More
details can be found in Sec. 5.6.

where Li
j = Bi

j for the binary encoding and Li
j = Gi

j for the Gray encoding. The
above equation is true for K ≥ 1; the case for K = 0 is the same as K = 1, since the
kinetic energy term is tridiagonal.

The number of Pauli terms in the Hamiltonian for both encodings is

|H(N,K)| =


d(n, 1) + n2n−1 K = 0

d(n,K) + 2n−1
K∑

k=1
nk 1 ≤ K ≤ 2n−1

2n−1(1 + 2n) K > 2n−1,

(5.62)

as depicted in Fig. 5.4, where

d(n,K) =

K∑
m=0

(
n
m

)
, (5.63)

and nk B n − dlog2(k)e. The proof for this can be found in Lemma D.11. For the
example of N = 4,K = 2, we see that the number of terms is 10, confirmed by
Eqs. (5.41) and (5.54). For K > N/2, we see that the number of Pauli terms is O(N2).
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To summarize, we show that the Gray and binary codes have the same number
of Pauli terms for all N and K. Furthermore, the number of Pauli terms saturates
above K = N/2. The one-hot encoding does not saturate, and at K = 2n−1, the one-
hot encoding always has more Pauli terms than the Gray or binary encoding. For
the general potential in consideration (5.7), Fig. 5.4 plots the number of terms as a
function of K for different N values.

5.5.2 Number of commuting sets

To measure any operator provided as a linear combination of Pauli strings,

O =

NP∑
i=1

aiPi, (5.64)

we can measure individual Pauli terms and sum the results, because

Tr[Oρ] =

NP∑
i=1

ai Tr[Piρ]. (5.65)

Thus, for an operator consisting of NP terms, we estimate the measurement statis-
tics for each of the NP terms.

Most quantum computers allow for measurements in the computational ba-
sis alone, i.e., in the Pauli-Z basis. If the Pauli term does not have Pauli-Z on a
particular qubit, the qubit must first be rotated before a computational basis mea-
surement. For example, to measure X ⊗ Z on a two-qubit state ρ,

Tr[(X ⊗ Z)ρ] = Tr[(H ⊗ I)(Z ⊗ Z)(H ⊗ I)ρ]
= Tr[(Z ⊗ Z)(H ⊗ I)ρ(H ⊗ I)]. (5.66)

Thus, measuring X ⊗ Z is equivalent to applying Hadamard on the first qubit and
then measuring in the computational basis.

A method to reduce the number of measurements is to measure commuting
observables in their common eigenbasis. The idea of reducing the measurement
complexity has led to a large number of advances [VYI2003, YVI2004, HMR+21].
Two commuting Pauli strings are guaranteed to have a common eigenbasis. Con-
sider two Pauli strings A and B such that [A, B] = 0, and denote the common
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eigenbasis as {|ψi〉}i. Thus,

A =
∑

i

ai|ψi〉〈ψi|, B =
∑

i

bi|ψi〉〈ψi|. (5.67)

The elements |ψi〉 are related to the computational basis elements |i〉 by a unitary
transformation. More concretely,

|ψi〉 = U |i〉 . (5.68)

Thus, to measure A and B simultaneously, we first apply the unitary U† and then
measure in the computational basis:

Tr[Aρ] =
∑

i

ai Tr[|ψi〉〈ψi|ρ]

=
∑

i

ai Tr[U |i〉〈i|U†ρ]

=
∑

i

ai Tr[|i〉〈i|U†ρU], (5.69)

and similarly for B:
Tr[Bρ] =

∑
i

bi Tr[|i〉〈i|U†ρU]. (5.70)

Thus, we can recreate the measurement statistics of both A and B by measuring
the state U†ρU in the computational basis. To measure multiple observables, each
element needs to pair-wise commute with all other elements. However, splitting
a set of observables into commuting sets and finding the common eigenbasis is
non-trivial. Furthermore, finding the U that rotates the computational basis into
this common eigenbasis is also non-trivial.

We now look at two alternate simpler strategies. The first strategy is to look at
qubit-wise commutativity (QC). Two Pauli strings qubit-wise commute if the cor-
responding operators acting on each qubit commute. For example, XIZ and XZI
qubit-wise commute since [X, X] = [I,Z] = [Z, I] = 0. Qubit-wise commutativity is
a sufficient, but not necessary, condition for general commutativity. For example,
XX and YY commute but do not qubit-wise commute. Thus, this strategy leads to
a sub-optimal grouping of Pauli strings. However, the grouping itself can be done
efficiently, and the unitary that rotates the computational basis into the common
eigenbasis is always a tensor product of individual Pauli operators.

In addition, in this paper, we introduce a new strategy that is based on group-
ing Pauli strings in terms of the distance operators defined in Appendix D.1. We
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Figure 5.5: Number of qubit-wise commuting Pauli sets terms for one-hot, binary,
and Gray encodings for a general potential of the form VK(r) =

∑K
k=0 vkr2k and a

general (tridiagonal to full) Hamiltonian matrix.

refer to this grouping as distance-grouped commutativity (DGC). While the pre-
cise structure is not relevant here, it leads to a more optimal set of Pauli operators
as compared to the qubit-wise scheme. However, the diagonalizing unitary, while
simple conceptually, is no longer a tensor-product of individual Pauli operators
(see Appendix D.1 for further details).

In this section, we analyze the number of QC and DGC sets that the Pauli
terms can be split into, for all encodings. The number of sets as a function of the
hyperparameter K and for various model-space sizes N is shown in Figs. 5.5-5.7.
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Figure 5.6: Number of DGC sets for the binary, and Gray encodings for a general
potential of the form VK(r) =

∑K
k=0 vkr2k and a general (tridiagonal to full) Hamilto-

nian matrix.

One-hot encoding: Qubit-wise commutativity

As seen in Eq. (5.25), the first summation results from the number operators.
These operators all qubit-wise commute, and their common eigenbasis is the com-
putational basis. Thus, the statistics of these operators can be inferred from a mea-
surement of Z⊗N . Similarly, the ladder operators can be split into two sets – one
with only X and I, and another with only Y and I. Within each of these sets, all
operators qubit-wise commute. Thus, the measurement statistics of all the oper-
ators can be inferred from the measurement of {X⊗N ,Y⊗N}. Thus, the number of
qubit-wise commuting sets is three.
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Figure 5.7: Comparing the two commutativity schemes for a general potential of
the form VK(r) =

∑K
k=0 vkr2k and a general (tridiagonal to full) Hamiltonian matrix.

We note that the DGC leads to fewer terms to be measured, at the cost of a more
complex rotation gate into a common eigenbasis.

Binary encoding: Qubit-wise commutativity

As stated in Lemma D.13 in Appendix D.1, the number of qubit-wise commuting
sets in a binary encoding is given by

|H(N,K)|C =


2n K = 0

1 +
K∑

k=1
2|bk̄ |

[
1 − 2−nk

]
1 ≤ K ≤ 2n−1

1
2 (1 + 3n) K > 2n−1,

(5.71)
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where |w| is the Hamming weight of the string w, the variable k̄ is defined as 2n− k,
nk B n− dlog2(k)e, and bi denotes the binary representation of i. We first notice that
the number of qubit-wise commuting sets for K > N/2 is O(N log2(3)).

For the example of N = 4,K = 2 from Eq. (5.41), qubit-wise commutativity
leads to the following sets:

{II,ZI, IZ,ZZ},
{IX,ZX},
{XI, XZ},
{XX},
{YY}. (5.72)

Gray encoding: Qubit commutativity

As stated in Lemma D.14 in Appendix D.1, the number of qubit-wise commuting
sets in a Gray encoding is given by

|H(N,K)|C =


1 + n K = 0

1 +
K∑

k=1
2|gk−1 |nk 1 ≤ K ≤ 2n−1

1
2 (1 + 3n) K > 2n−1,

(5.73)

where |w| is the Hamming weight of the string w, nk B n− dlog2(k)e, and gk denotes
the kth entry in the Gray basis. We first notice that the number of sets for K > N/2
is O(N log2(3)). The set of Pauli strings for K > N/2 being exactly the same as the bi-
nary encoding, leads to the number of commuting sets being equal. However, we
note that for K < N/2 the Gray encoding leads to a lower number of qubit-wise
commuting sets than the binary encoding. Indeed, the ordering of the compu-
tational basis elements in the Gray encoding favors low-weight Pauli strings for
lower K, leading to a lower number of qubit-wise commuting sets.

For the example of N = 4,K = 2 from Eq. (5.54), qubit-wise commutativity
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leads to the following sets:

{II,ZI, IZ,ZZ},
{IX,ZX},
{XI, XZ},
{XX},
{YY}. (5.74)

Since this example is for the case of K = N/2, as expected, the number of QC sets
is the same for both binary and Gray encodings.

Binary/Gray encoding: Distance-grouped commutativity

As seen in Lemma D.17, the number of distance-grouped commuting sets is given
by

|H(N,K)|C =


1 + n K = 0

1 +
K∑

k=1
nk 1 ≤ K ≤ 2n−1

2n K > 2n−1,

(5.75)

where nk B n−dlog2(k)e. We note that the number of DGC sets for K > N/2 is O(N).
However, each measurement requires a more complex unitary transformation to
a common eigenbasis as compared to the qubit-commutative sets.

For the example of N = 4,K = 2 from Eqs. (5.54) and (5.41), distance-grouped
commutativity leads to the following sets:

{II,ZI, IZ,ZZ},
{IX,ZX},
{XI, XZ},
{XX,YY}. (5.76)

While the number of DGC sets for the Gray and binary encoding are exactly
the same for all N and K, the complexity in the measurement procedure is not the
same. We now quantify the complexity of the measurement scheme based on the
number of two-qubit gates in the diagonalizing unitaries for both encodings.
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As stated in Lemma D.19 in Appendix D.1, the number of two-qubit gates in
the diagonalizing unitary using the DGC scheme for the binary code is given by

|H(N,K)|DU =


0.5n(n − 1) K = 0

0.5
K∑

k=1
nk

[
2|b(k)| − 1 − nk

]
1 ≤ K ≤ 2n−1

1 + 2n−1(n − 2) K > 2n−1,

(5.77)

where nk B n − dlog2(k)e.

Similarly, from Lemma D.18 in Appendix D.1, the number of two-qubit gates
in the diagonalizing unitary using the DGC scheme for the Gray code is given by

|H(N,K)|DU =


0 K = 0
K∑

k=1
nkgk−1 1 ≤ K ≤ 2n−1

1 + 2n−1(n − 2) K > 2n−1,

(5.78)

where nk B n − dlog2(k)e, k̄ is defined as 2n − k, and |b(k)| is Hamming weight of the
binary representation of k. A comparison of the two encoding schemes is given in
Fig. 5.8.

To summarize, compared to the binary encoding, the Gray encoding has the
same number of Pauli strings, and for a bandwidth of up to N, it has a lower
number of QC sets, the same number of DGC sets but a less complex diagonal-
izing unitary. The advantage of the Gray encoding over other encodings comes
from the fact that every basis entry differs from its neighbours on a single bit.
This, coupled with the fact that the Hamiltonian must be Hermitian, guarantees
G1

m + (G1
m)† to be Pauli-X on the single flipped qubit, and single-qubit projectors on

the remaining qubits. This leads to the same number of Pauli strings as compared
to the binary encoding, a lower number of QC sets, and the same number of DGC
sets but with a lower number of two-qubit gates for low bandwidths.

For example, using the Gray encoding for N = 8, the step-1 ladder operator G1
1

along with its Hermitian conjugate consists of the following Pauli strings:

G1
1 + (G1

1)† = P1
1 ⊗ X1 ⊗ P0

2

= IXI + IXZ − ZXI − ZXZ, (5.79)

where the qubit numbers are omitted for clarity. The measurement statistics of all
these Pauli strings, using both the QC and DGC scheme, can be inferred from the
measurement statistics of ZXZ.
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Figure 5.8: Comparing the number of two-qubit gates needed in the DGC mea-
surement scheme for the binary and Gray codes for a general potential of the form
VK(r) =

∑K
k=0 vkr2k and a general (tridiagonal to full) Hamiltonian matrix.

In comparison, the binary encoding for the same step-1 ladder operator B1
1

along with its Hermitian conjugate consists of the following Pauli strings:

B1
1 + (B1

1)†

= P1
0 ⊗ [(|1〉〈0|1 ⊗ |0〉〈1|2) + (|0〉〈1|1 ⊗ |1〉〈0|2)] ,

= IXX + IYY − ZXX − ZYY, (5.80)

where the qubit numbers are omitted for clarity. In the QC scheme, we need to
measure ZXX and ZYY to infer the measurement statistics of all the above oper-
ators. In the DGC scheme, we need to measure Z0 ⊗ (UGHZ

1,2 )†(Z1 ⊗ Z2)UGHZ
1,2 , where

UGHZ is defined in Lemma D.16 in Appendix D.1.

273



Remark 5.2. As seen in Table 5.1, the number of commuting sets for the one-hot encoding
is always three, independent of system size. On the other hand, for the binary and Gray
encodings detailed in Table 5.2 and Table 5.3, we find that the number of qubit-wise com-
muting sets and distance-grouped commuting sets depends on N,K and is strictly greater
than three. While this gives the impression that the one-hot encoding leads to simpler
measurements, we note that these measurements are on N qubits, as opposed to log2(N)
qubits.

5.6 Quantum simulations and discussions

In this section, we perform quantum simulations using the Gray and one-hot en-
codings, with and without noise effects, and we discuss the results. The aim is
to illustrate if nuclear problems with band-diagonal Hamiltonian matrices can be
solved on current quantum devices and to compare the two types of encodings.
Specifically, we study the lowest 1

2
+ bound state in the n+10C, n+12C, and n+14C,

using an exponential potential given in Eq. (5.13). We also perform quantum sim-
ulations for the lowest 1

2
+ orbit in the ab initio deduced n-α local potential3.

5.6.1 Exponential potentials for neutron-Carbon dynamics

For Carbon targets, we use the exponential potential of Eq. (5.13) with parameters
given in Table 5.4. These parameterizations yield effective interactions that closely
reproduce the experimental energy of the lowest 1

2
+ state in the composite n+C

system (cf. the calculated energy Eth and experimental energy Eexpt in Table 5.4).

For Gaussian-like exponential potentials, the truncation parameter K needs to
be odd, since for even K values, the potential curves downward with increasing
distance and leads to spurious bound states. Furthermore, the K = 3 case provides
a reasonable approximation, as illustrated by the K = 3 error band in Fig. 5.9. This
error is smaller for the lighter isotopes, where the 1

2
+ state is more deeply bound

(larger binding energy) compared to the one for n+16C and n+18C (see also EK=3
th in

3We note that an optical potential, such as the one derived in the Green’s function approach
[BLM+24], provides a mean field that, for n+α, yields a negative-energy 1

2
+ orbit, occupied by the

protons and neutron of the α particle, and is associated with the physics of a hole in 4He, that is,
with the ground state of 3He. The next 1

2
+ eigensolution (in increasing energy) corresponds to a

scattering state in 5He.
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Figure 5.9: Energy of the lowest 1
2

+ state in (a) n+10C, (b) n+12C, (c) n+14C, (d)
n+16C, and (e) n+18C, vs. the model-space size N for VE (5.13) (blue filled) and
its K = 3 approximation (purple open, for N qubits; red open, for n = log2 N
qubits), as compared to experiment (dashed line) [KKP+12,AS91,22]. Shaded area
provides the error associated with the K = 3 approximation (the small error band
for n+10C is not visible on the plot).
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Table 5.4). It is important to note that weakly bound states converge at a slower
rate compared to states with larger binding energies. As shown in Fig. 5.9, the N =

8 energy (or 3 qubits for the Gray encoding) closely agrees with the exact value
for n+10C, but larger model spaces are needed for the other systems. The model-
space size requirements become even larger for resonances. This suggests that
the use of the Gray encoding that can reach large model spaces with fewer qubits
becomes advantageous for weakly bound states and resonances. To illustrate the
advantages of the Gray encoding compared to the one-hot encoding, we perform
quantum simulations for n+14C using both encodings, which is detailed below.

5.6.2 Ab initio deduced local optical potential for n+α

The n+4He optical potential is calculated using the ab initio symmetry-adapted
no-core shell model with Green’s function approach (SA-NCSM/GF) [BLM+24],
with the chiral NNLOopt nucleon-nucleon potential [EBF+13], at a center-of-mass
energy E = 0 MeV, and for 15 HO shells with ~ω = 12 and 16 MeV (see Fig. 5.10a).
The choice for the basis parameters, the total number of HO shells and ~ω, is
based on a systematic study of large-scale calculations reported in Ref. [BLM+24];
namely, Ref. [BLM+24] has shown that for these parameters, n+α phase shifts are
converged with respect to the model-space size (see Fig. 8 of Ref. [BLM+24]), lead-
ing to a parameter-free estimate for the total cross section that is shown to re-
produce the experiment (see Fig. 3 of Ref. [BLM+24]). From the ab initio optical
potential and using Eq. (5.4), one can calculate the local potential V(r) for ~ω = 12
MeV (Fig. 5.10b):

V(r) = −57.207 + 6.653r2 + 0.086r4 − 0.013r6 (5.81)
− 0.001r8 − 1.8 × 10−5r10 + 2.3 × 10−6r12

+ 2.1 × 10−7r14 + 5.7 × 10−9r16 − 3.6 × 10−10r18

− 4.3 × 10−11r20 − 1.5 × 10−12r22

+ 5.0 × 10−14r24 + O(r26) (r . 3.5fm),

with the corresponding lowest eigenvalue of the original nonlocal potential E0 =

−18.85 MeV.
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Figure 5.10: (a) Ab initio nonlocal n+4He potential as a function of the distance r
from the center-of-mass of the α particle for the S 1

2
partial wave, calculated in the

SA-NCSM/GF with ~ω = 16 MeV and 15 HO shells, for zero projectile energy
(see also Fig. 4 in Ref. [BLM+24] for other energies and partial waves). (b) & (c)
Approximate potentials for different truncation parameters K, as compared to the
ab initio deduced local potential labeled as “Local V" (black, solid) for (b) ~ω = 12
MeV and (c) ~ω = 16 MeV. The corresponding exact lowest eigenvalue E0 is also
shown (gray, dotted).
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The local potential V(r) for ~ω = 16 MeV (Fig. 5.10c):

V(r) = −59.571 + 6.448r2 + 0.133r4 − 0.007r6 (5.82)
− 0.001r8 − 4.8 × 10−5r10 + 4.1 × 10−7r12

+ 2.3 × 10−7r14 + 1.5 × 10−8r16 + 3.0 × 10−10r18

− 3.6 × 10−11r20 − 3.8 × 10−12r22

− 1.5 × 10−13r24 + O(r26) (r . 3.5fm),

with the corresponding lowest eigenvalue of the original nonlocal potential E0 =

−20.84 MeV. Hence, across the range of ~ω = 12-16 MeV, the ab initio potential
yields the lowest 1/2+ orbit at energy E0 = −19.8 ± 1.0 MeV, which closely agrees
with the corresponding 3He experimental energy of −20.58 MeV associated with
a neutron removal from the 4He target.

Before running simulations, the hyperparameter K of Eq. (5.15) needs to be
chosen. From Figs. 5.10b & c, one determines that K = 1, 2, and 7(8) represent
reasonable approximations to the local potential with ~ω = 12(16) MeV at small
distances, without the possibility of introducing spurious bound states. Indeed,
as seen in Figs. 5.10b & c, truncations at other K values yield potentials that are
attractive around 3.5 fm (the K = 3 approximation becomes largely attractive be-
yond 5 fm). The quantum simulations for n+α discussed below are performed for
K = 1 and 2, since the low-K regime with the Gray encoding is expected to bene-
fit largely from the use of commuting sets (see Sec. 5.5) on existing and far-term
quantum devices.

5.6.3 Description of the quantum simulations

The ansatz choice for the different simulations is given in Sec. 5.4.2. For the n+C
systems with an exponential potential, we perform simulations with N = 8 and
N = 16, with K = 3 (7-diagonal matrix). For the n+α systems, we use N = 8, with
K = 1 and K = 2. The type of the simulations are as follows:

• Exact diagonalization (referred to as “true value"): We diagonalize the ma-
trix exactly (using classical methods) and find the minimum eigenvalue,
which is used to validate the quantum simulation outcomes.

• Noiseless simulation: We use a perfect noiseless state-vector simulator to
simulate ideal behavior.
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• Shot-noise simulation: We perform a shot-noise simulation using a variable
number of shots (see Appendices D.3 and D.4). The shot-noise simulation
is useful in the scenario where the quantum device is perfect and noiseless.
However, the shot noise from the final measurements is unavoidable. This
method gives a good estimate of performance in the far-term error-corrected
regime.

• Noisy simulation: We perform a noisy quantum simulation with noise mod-
els from existing quantum devices. Specifically, in this study, the cost func-
tion estimates use a fake IBMQ backend ibm_manila. This method gives a
good estimate of performance in the near-term NISQ regime.

• Noise-resilient estimation: We use the final parameters θ from the noisy sim-
ulation and calculate the expectation value of the Hamiltonian on a classical
machine to find a noiseless estimate for the minimum energy, which we re-
fer to as the noise-resilient (NR) value. The idea of noise-resilient training
was first introduced in [SKCC20]. We find that the algorithm exhibits noise
resilience; i.e., the NR value is more accurate than the noisy simulation out-
come. In other words, training is still possible in a noisy scenario.

In all examples, we use a combination of the Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm [Spa92], and gradient descent to es-
timate the gradient (see Appendices D.3 and D.4 for specific details). The SPSA
method provides an unbiased estimator of the gradient with a runtime indepen-
dent of the number of parameters. We find that deviation from the true value
caused the noise introduced by SPSA to increase with the problem size. However,
we find that it is useful to quickly obtain a solution close to the optimal value.
From here, we use gradient descent to improve the accuracy of the optimal solu-
tion.

For the n+C system, we take as input N, K, ~ω, V0, and c. For the n+α system,
we take as input N, K, ~ω, and the list of coefficients {vk}

K
k=0.

We note that in all simulations, the overall Hamiltonian matrix is constructed
and then the expectation value is calculated as an inner product. Nonetheless, for
runs on a quantum device, further advantages will stem from using qubit-wise or
distance-grouped commuting sets. For example, in the case of the Gray encoding,
for N = 16 (four qubits) and K = 3, there are 88 Pauli strings, 19 QC sets, and 10
DGC sets (e.g., see Table D.2).
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In our simulations, we use a warm-start initialization for the ansatz parame-
ters, inspired by perturbation theory. For the exponential potential, see Eq. (5.13),
and for the local potentials deduced ab initio, see Eqs. (5.82) and (5.83), each pro-
gressive diagonal is scaled by an increasingly smaller coefficient. As a result, we
expect each additional diagonal to alter the eigenvalue to a lesser extent than the
previous diagonals. Inspired by this, we run the simulations for a lower K value
using fewer iterations and shots. This enables the optimization to quickly reach
an approximate solution. Then, we use the endpoint of this simulation as the start
for the full-scale simulation. We find that, in practice, this leads to finding the
optimal solution in fewer iterations. In Figs. 5.11-5.17, the large peaks in energy
during the optimization occur due to this switch from a lower K to the required
value. We note that switching from SPSA to gradient descent can also introduce
these peaks. However, the initial learning rate of the gradient descent stage can
be tuned to remove this source.

5.6.4 Quantum simulations for neutron-Carbon dynamics

In this section we present the results of the different simulations for n-Carbon dy-
namics. The specific details, including the number of iterations, type of gradient
estimator, and number of shots, can be found in Appendix D.3. We provide simu-
lations that, for the first time, show the efficacy of the Gray code for a Hamiltonian
matrix beyond the tridiagonal case, that is, for K = 1 (bandwidth of 3). With the
Gray code, we can utilize only three and four qubits to simulate model spaces
of N = 8 and 16 basis states, respectively. This provides acceptable results that
closely agree with the energy for the K = 3 approximation, which lies near the ex-
act theoretical energy as discussed above (see Fig. 5.9 for N = 8 and N = 16). The
quantum simulations for n+10C, n+12C, and n+14C are shown in Figs. 5.11-5.13,
and the case of n+14C is compared to the one-hot encoding in Fig. 5.14.

We summarize the energy estimates from the various quantum simulations in
Table 5.5.

In particular, in all cases the noiseless and shot-noise simulations with the Gray
code yield results with very small errors, mostly, 10−10-10−3. Importantly, they re-
produce the true value within 0-2%, with the only exception being the 6% devia-
tion in EK=3

shot for 12C and N = 16.

A very significant result is that the noisy simulations, which are expected to
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simulate runs on current NISQ processors, provide very reasonable energy esti-
mates through the use of the NR value. In particular, we find that the algorithm
exhibits noise resilience; i.e., the NR value EK=3

NR is more accurate than the noisy
simulation outcome and training of the wavefunctions parameters is still possible
in a noisy scenario. Furthermore, for these n-C systems, we show that the EK=3

NR
energies differ from the corresponding true value only by 600-950 keV, which sur-
passes the accuracy of many nuclear models. The only exception is the four-qubit
simulation for n+14C (Fig. 5.13), which predicts an unbound 1

2
+ state at 0.59 MeV

for the weakly bound state at −1.0 MeV. While this is still a reasonable estimate,
weakly bound states require larger model spaces to achieve convergence, as dis-
cussed above, which implies the need for larger number of qubits. This means that
special care needs to be taken in the quantum simulations of such systems, includ-
ing n+16C and n+18C, when performed on NISQ devices. One way to improve this
is to try different ansatz structures, or a larger model space, which remains to be
shown in future work.

We note here that for the example of n+10C, with N = 8 and K = 3, in addition
to the noise resilient final estimate, we report the mean and standard deviation
of the noiseless estimates of the last 100 noisy iterations. In other words, we use
the parameters from last 100 noisy iterations, calculate the noiseless estimate, and
report the mean and standard deviation to be −6.05±0.07. This is ∼ 2σ away from
the EK=3

NR value reported in Table 5.5 calculated from the last iteration only, which
is very reasonable. This further solidifies the idea that the noise resilient method
offers a much better estimate as compared to the noisy estimate. However, in
any large-scale experiment, we would not recommend running the noiseless sim-
ulation for hundreds of iterations. This is because each noiseless simulation is
prohibitively expensive. Instead, in this study, we use the standard deviation for
n+10C as a guidance to the number of the significant digits we report for the noise
resilient estimates in all simulations.

Furthermore, even in the case of weakly bound states, the Gray code with
three qubits is superior to the one-hot encoding with eight qubits, as illustrated in
Fig. 5.14 and Table 5.5. Indeed, compared to the Gray-code case, the one-hot sim-
ulations are much slower and show worse performance in the presence of noise.
In particular, the one-hot simulation yields larger errors [e.g., by six (two) orders
of magnitude for the noiseless (shot noise) simulations], as well as a deviation for
EK=3

NR from the true value that is twice as large as the corresponding Gray-code esti-
mate. In addition, as shown in Figs. 5.2 and 5.3 as well as in Tables 5.1, 5.2, 5.3, the
one-hot ansatz utilizes 13 two-qubit gates compared to only 8 two-qubit (CNOT)
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gates in the Gray encoding ansatz with L = 4 used in our simulations. This sug-
gests that the Gray encoding and the use of fewer qubits are indeed highly advan-
tageous for nuclear problems that achieve convergence in larger model spaces,
with the case of weakly bound systems presented here being an illustrative exam-
ple.

5.6.5 Quantum simulations with the Gray encoding for n+α us-
ing ab initio optical potentials

In this section, we present the results of the simulations for the n+α dynamics.
The specific details, including the number of iterations, type of gradient estimator,
and number of shots, can be found in Appendix D.4. The quantum simulations
for n+α are carried out for model spaces of N = 8 (Fig. 5.15) and N = 16 (Fig. 5.16)
for ~ω = 12 MeV and of N = 8 (Fig. 5.17) for ~ω = 16 MeV. We show the cases of
K = 2 for a potential of O(r4) and K = 3 for a potential of O(r6).

We summarize the energy estimates from the various quantum simulations in
Table 5.6. The energies EK

th from the exact diagonalization for K = 1 and 2 converge
within the first four to five digits with the increasing model space from N = 8 to
N = 16, as illustrated in Table 5.6 for ~ω = 12 MeV (for ~ω = 16 MeV, EK=1

th = −20.77
MeV and EK=2

th = −18.95 MeV for N = 16). Hence, the final estimates are based on
the N = 8 results, where the uncertainties are estimated for a 14% variation of the
~ω values (~ω = 12-16 MeV), the same range that yields a total cross section for the
neutron scattering on 4He that is converged and in agreement with experiment,
as discussed in Ref. [BLM+24]. In addition, the K = 1 and K = 2 approximation
energies are very close to the corresponding E0 eigenenergy of the original non-
local ab initio optical potential. In fact, across the ~ω range, the energy of the
lowest 1

2
+ orbit is estimated at −19.3(1.5) MeV for K = 1 and at −17.8(1.2) MeV for

K = 2, both of which agree within the uncertainties with the non-local estimate
of −19.8(1.0) reported above. Exactly the same energy estimates are obtained by
the noiseless and shot simulations (−19.3 ± 1.5 MeV for K = 1 and at −17.8 ± 1.2
MeV for K = 2). We note that the errors that stem from these simulations (of
order of a few keV) are inconsequential compared to the ones associated with
the ~ω variation (∼ 1 − 1.5 MeV). Importantly, while the noisy simulations yield
unacceptably large energies, the corresponding NR energies agree with the shot-
noise outcomes within 1σ: −18.6(1.7) MeV for K = 1 and −17.1(1.2) MeV for K =

2, while leading to slightly larger or comparable error bars. This suggests that
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deep bound states described by an ab initio deduced NA optical potential can be
reasonably well approximated by tri- to five-diagonal potentials, and in turn, can
be successfully simulated on far-term error-corrected devices (practically yielding
the true result) and even on NISQ processors (yielding energies within 1σ across
a 14% ~ω variation).

5.6.6 Comparing QC and DGC schemes

In this section we compare the efficacy of QC and DGC schemes using both the
Gray and binary encodings. We perform both noiseless and shot noise simulations
for all cases. In the shot noise runs, we keep the total number of shots per varia-
tional run to be fixed. This is to simulate a fixed amount of “quantum" resources.
Furthermore, in contrast with the preceding simulations in this work, here we
only use gradient descent with a varying learning rate scheme to estimate the gra-
dient. This removes the effects of the SPSA noise and gives a clearer picture of the
inherent shot noise. However, this also leads to results of the noiseless simulations
in this section being slightly different from those reported in Table 5.6, since the
noise introduced by SPSA can take the system out of a local minima and converge
to a better solution.

We first compare QC and DGC using the Gray encoding (Fig. 5.18). We per-
form simulations for the n+α system using a model space of N = 8, ~ω = 12MeV,
and K = 1 for a potential of O(r2). We expect the noiseless QC and DGC to be
exactly the same, and the plots reflect this. However, since DGC leads to a more
optimal grouping of Pauli terms, each group is allocated more shots. Thus, we
expect DGC to outperform QC in the shot noise runs, which is what the data in
Fig. 5.18 indicates. The results are summarized in Table 5.7.

Next, we compare the Gray and binary encoding using the QC scheme. From
the results of Sec. 5.5.2, we expect the Gray encoding to outperform the binary
encoding, and the data in Fig. 5.19 clearly corroborates this. The outcomes of
these simulations are summarized in Table 5.8. While the Gray encoding agrees
with the noiseless result within 1σ, the binary encoding leads to a larger standard
deviation and at least a 2σ agreement.
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5.7 Conclusion

In this work, we developed a quantum algorithm to simulate neutron-nucleus
dynamics on a quantum processor. We generalize the form of the nuclear Hamil-
tonian to any band-diagonal to full matrices, which can accommodate a general
central potential and a complete form of the chiral NN potential. We compare and
contrast three encoding schemes, namely, the one-hot, binary, and Gray encod-
ings. We show that the Gray encoding remains more resource efficient beyond the
tridiagonal case, resolving an open problem posed in Ref. [DMMG+21].

To estimate the measurement statistics, which is of key importance to success-
ful simulations on quantum devices, we provide an extensive numerical analysis
of the number of Pauli terms and qubit-wise commuting sets in the Hamiltonian
as a function of the matrix size and the number of off-diagonals. We show that
when the number of off-diagonals 2K + 1 exceeds the size of the matrix N, the
number of Pauli terms and commuting sets saturate, with the Gray/binary en-
coding having fewer Pauli terms than the one-hot encoding. Beyond this point,
more off-diagonals can be added to the problem, improving the approximation,
without further load to the quantum device.

We also introduce a new commutativity scheme, DGC, that allows for a more
optimal grouping of Pauli strings at the cost of a more complex diagonalizing
unitary, as compared to the qubit-commutativity scheme. We show that for small
bandwidths (K < N/2), the Gray encodings leads to the same number of Pauli
strings as compared to the binary encoding, a lower number of QC sets, and the
same number of DGC sets but with a lower number of two-qubit gates. While the
number of commuting sets for the one-hot encoding is always three, we note that
these measurements are on N qubits, as opposed to log2(N) qubits.

To demonstrate the efficacy of the Gray encoding, the one-hot and Gray en-
codings are compared in quantum simulations of the lowest 1

2
+ state of n+14C,

only bound by 1.04 MeV in the K = 3 approximate potential, for N = 8 basis
states. Indeed, compared to the Gray-code simulations with three qubits, the one-
hot simulations with eight qubits are much slower and show worse performance
in the presence of noise. In addition, we perform quantum simulations using a
shot-noise and noisy simulator to inform the suitability of these simulations in
the far-term error-corrected and NISQ regimes, respectively. It is remarkable that
for n+10,12C and n+α, we find that the shot-noise energies practically reproduce the
corresponding exact value, whereas the noisy simulations coupled with the noise-
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resilient training method yield energies that deviate by less than one MeV. Finally,
for the bound 1

2
+ orbit of the neutron-alpha optical potential deduced ab initio, we

report energy from the noisy quantum simulation that lies only within 1σ of the
shot-noise outcome across a 14% ~ω variation. For this case, we also show that
simulations with the DGC scheme outperform those using the QC scheme, and
that the Gray encoding (for the QC scheme) leads to better precision and agree-
ment with the noiseless outcome compared to the binary encoding.

Going forward from here, one could simulate systems of three clusters or
larger (multi-channel reaction descriptions or multiple pairs of nucleons for reach-
ing heavy nuclei) to give a better understanding of the scaling of the problem and
whether the Gray efficacy shown here for two clusters propagates to more com-
plex systems. It is also important to explore the dependence on the energy scale,
and in particular, to seek further improvements to manage very weakly bound
states and resonances. Another open theoretical question is about the optimality
of the Gray code. In this work, we use the binary reflective Gray code, but any
Gray code will lead to the same performance.

The code for the simulations can be found as a Zenodo repository [RGW+24b].
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HN,K K ≤ N/2 K > N/2

Qubits log2(N)

Pauli Terms d(n,K) + 2n−1
K∑

k=1
nk 2n−1(1 + 2n)

QC Sets 1 +
K∑

k=1
2|b(k̄)|[1 − 2−nk] 1

2 (1 + 3n)

DGC Sets 1 +
K∑

k=1
nk 2n

2QG in Diag.
Unitary

1
2

K∑
k=1

nk

[
2|b(k)| − 1 − nk

]
1 + 2n−1(n − 2)

Ansatz nL one-qubit gates + (n − 1)L
two-qubit gates

Table 5.2: Number of qubit, Pauli terms, qubit-wise commuting sets and distance-
grouped commuting sets for the binary encoding, for a general Hamiltonian ma-
trix of 2K + 1 bandwidth. Here we use N = 2n and nk B n − dlog2(k)e. The quantity
d(n,K) is defined in (5.63). For the ansatz, L refers to the number of layers, which is
chosen large enough beforehand. In the present study, the Hamiltonian for K = 0
(diagonal potential) is tridiagonal because of the kinetic energy term, in which
case the entries for K = 1 should be used. Notably, for K > N/2, there is a satura-
tion in all quantities, implying that larger diagonal width (better approximation)
can be handled without an increase in the complexity of the problem. More de-
tails can be found in Sec. 5.6.
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HN,K K ≤ N/2 K > N/2

Qubits log2(N)

Pauli Terms d(n,K) + 2n−1
K∑

k=1
nk 2n−1(1 + 2n)

QC Sets 1 +
K∑

k=1
nk2|g(k−1)| 1

2 (1 + 3n)

DGC Sets 1 +
K∑

k=1
nk 2n

2QG in Diag.
Unitary

K∑
k=1

nk|gk−1| 1 + 2n−1(n − 2)

Ansatz nL one-qubit gates + (n − 1)L
two-qubit gates

Table 5.3: Number of qubit, Pauli terms, qubit-wise commuting sets and distance-
grouped commuting sets for the Gray encoding, for a general Hamiltonian matrix
of 2K + 1 bandwidth. Here we use N = 2n and nk B n − dlog2(k)e. The quan-
tity d(n,K) is defined in (5.63). For the ansatz, L refers to the number of layers,
which is chosen large enough beforehand. In the present study, the Hamiltonian
for K = 0 (diagonal potential) is tridiagonal because of the kinetic energy term, in
which case the entries for K = 1 should be used. Notably, for K > N/2, there is
a saturation in all quantities, implying that larger diagonal width (better approx-
imation) can be handled without an increase in the complexity of the problem.
More details can be found in Sec. 5.6.
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A Eexpt [MeV] Eth [MeV] EK=3
th [MeV] 1

~ω
V0 c−

1
2

n+10C 10 −6.78 −6.78 −6.74 −0.650 5.43
n+12C 12 −1.86 −1.86 −1.74 −0.283 5.35
n+14C 14 −1.22 −1.22 −1.04 −0.242 5.0
n+16C 16 −0.52 −0.52 −0.23 −0.175 4.7
n+18C 18 −0.58 −0.59 −0.30 −0.192 4.6

Table 5.4: Experimental energy for the lowest 1
2

+ state for each neutron-Carbon
system, with the corresponding theoretical energy Eth of the exponential potential
VE (5.13) and its K = 3 approximation EK=3

th . For each case, the parameters (V0 and
c) of the Hamiltonian are shown, with ~ω = 41

(A+1)1/3 MeV, where A is the mass of
the target.
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Figure 5.11: Quantum simulation using the Gray encoding for the energy of the
lowest 1

2
+ state for n+10C modeled by the VE exponential potential Eq. (5.13) with

(a) N = 8 (n = 3 qubits) and (b) N = 16 (n = 4 qubits), with K = 3 and for
different types of simulations detailed in Sec. 5.6.3, as compared to the theoretical
energy EK=3

th labeled as “True Value" (for the Hamiltonian parameters and EK=3
th ,

see Table 5.4). The inset plots are the last 200 iterations.
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Figure 5.12: Quantum simulation using the Gray encoding for the energy of the
lowest 1

2
+ state for n+12C modeled by the VE exponential potential Eq. (5.13) with

(a) N = 8 (n = 3 qubits) and (b) N = 16 (n = 4 qubits), with K = 3 and for
different types of simulations detailed in Sec. 5.6.3, as compared to the theoretical
energy EK=3

th labeled as “True Value" (for the Hamiltonian parameters and EK=3
th ,

see Table 5.4). The inset plots are the last 200 iterations.
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Figure 5.13: Quantum simulation using the Gray encoding for the energy of the
lowest 1

2
+ state for n+14C modeled by the VE exponential potential Eq. (5.13) with

(a) N = 8 (n = 3 qubits) and (b) N = 16 (n = 4 qubits), with K = 3 and for
different types of simulations detailed in Sec. 5.6.3, as compared to the theoretical
energy EK=3

th labeled as “True Value" (for the Hamiltonian parameters and EK=3
th ,

see Table 5.4). The inset plots are the last 200 iterations.
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Figure 5.14: Simulation using the one-hot encoding for the energy of the lowest 1
2

+

state for n+14C modeled by the exponential potential Eq. (5.13) with N = 8 (n = 8
qubits) and K = 3. The different types of simulations are detailed in Sec. 5.6.3.
The inset plots the last 200 iterations.
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Figure 5.15: Simulation with the Gray encoding for the n-α ab initio potential for
~ω = 12 MeV Eq. (5.82) with N = 8 (n = 3), and (a) K = 1 and (b) K = 2. The
different types of simulations are detailed in Sec. 5.6.3. The inset plots the last 200
iterations.
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Figure 5.16: Simulation with the Gray encoding for the n-α ab initio potential for
~ω = 12 MeV Eq. (5.82) with N = 16 (n = 4), and (a) K = 1 and (b) K = 2. The
different types of simulations are detailed in Sec. 5.6.3. The inset plots the last 200
iterations.
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Figure 5.17: Simulation for the n-α ab initio potential for ~ω = 16 MeV Eq. (5.83)
with N = 8, and (a) K = 1 and (b) K = 2. The different types of simulations are
detailed in Sec. 5.6.3. The inset plots the last 200 iterations.
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Simulation Mean and Standard Deviation
Noiseless + QC −17.78384 ± 0.00009

Noiseless + DGC −17.78384 ± 0.00009
Shot Noise + QC −17.67 ± 0.14

Shot Noise + DGC −17.72 ± 0.13

Table 5.7: Comparing the QC and DGC schemes using the Gray encoding, in the
case of the n+α system for N = 8 (three qubits), ~ω = 12, and K = 1, corresponding
to Figure 5.18. The total number of shots per variational run is 106. The mean and
standard deviation reported are calculated using the last 100 iterations.
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Figure 5.18: Comparison of the QC and DGC schemes for simulations with the
Gray encoding of the n+α system using a model space of N = 8, K = 1, and
~ω = 12MeV. The different types of simulations are detailed in Sec. 5.6.3 (the
curves for the two noiseless simulations are indistinguishable). The inset plots
the last 100 iterations.
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Simulation Mean and Standard Deviation
Noiseless −16.5990 ± 8 × 105

Shot Noise + QC + Gray −16.31 ± 0.34
Shot Noise + QC + binary −15.80 ± 0.57

Table 5.8: Comparing the Gray and binary encodings using the QC scheme, in the
case of the n+α system for, N = 8 (three qubits), ~ω = 12, and K = 2, corresponding
to Figure 5.19. The total number of shots per variational run is 106. The mean and
standard deviation reported are calculated using the last 100 iterations.
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Figure 5.19: Comparison of the Gray and binary encodings using the QC scheme
for simulations of the n+α system using a model space of N = 8, K = 2, and
~ω = 12MeV. The different types of simulations are detailed in Sec. 5.6.3. The
inset plots the last 100 iterations.
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Appendix A

Big-O Notation

In this appendix, we give a short summary of the Big-O notation that gives us a
method to describe the long-term behavior of functions and is commonly used to
describe the performance of an algorithm. Consider the following two functions
f (x) = 100x and g(x) = x2. The plots for these two functions can be found in
Figure A.1. For small values of x, f (x) > g(x), but after x = 100, g(x) > f (x) for all x.
Given two algorithms to solve the same problem, Algorithm 1, requiring f (x) time
and Algorithm 2, requiring g(x) time, we should always prefer to use Algorithm
1 despite the fact that it takes longer for smaller inputs. This is because we are
interested in the performance for larger inputs, where Algorithm 1 outperforms
Algorithm 2. Let us now look at a formal definition.

Definition A.1 [Big-O]. Consider two functions f (x) and g(x). We write that

f (x) = O(g(x)) (A.1)

if and only if there exists constants N and c such that

f (x) ≤ cg(x) ∀x > N. (A.2)

Intuitively, this means that f does not grow faster than g. In the example above,
we can pick c = 1 and N = 100 to satisfy the constraints.

When f (x) = O(g(x)), this means that g(x) is an asymptotic upper bound on
f (x). An important point here is that we can always pick larger and larger func-
tions g(x) such that this is true. For example, say a function f (x) = O(x2). Then, it
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Figure A.1: Comparison of the asymptotic growth of two functions.

is clear that f (x) = O(x3) as well. The idea is to find the tightest asymptotic upper
bound.

Using the Big-O notation, functions can be classified based on the growth. A
few examples classes, in increasing magnitude, are as follows:

1. Constant - f (x) = 5.

2. Log - f (x) = 100 log(x).

3. Linear - f (x) = 2x.

4. LogLinear - f (x) = x log(x).

5. Polynomial - f (x) = xc.

6. Exponential = f (x) = cx.

7. Factorial = f (x) = 2x!.
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Appendix B

Supplementary material of Chapter 3

B.1 Proof of Theorem 3.1

Proof of Theorem 3.1. After Step 1 of Algorithm 3.4, the global state is

|Φ〉T ′T |0〉RS . (B.1)

After Step 2 of Algorithm 3.4, it is

1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T |ψi〉RS . (B.2)

After Step 4 of Algorithm 3.4, it is

PT ′RF→T ′′F′

 1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T |ψi〉RS |0〉F

 . (B.3)

For a fixed unitary P ≡ PT ′RF→T ′′F′ of the prover, the acceptance probability is then∥∥∥∥∥∥∥〈Φ|T ′′T P

 1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T |ψi〉RS |0〉F


∥∥∥∥∥∥∥

2

2

=
1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T |ψi〉RS |0〉F

∥∥∥∥∥∥∥
2

2

. (B.4)

In a quantum interactive proof, the prover is trying to maximize the probability
that the verifier accepts. So the acceptance probability of Algorithm 3.4 is given
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by

max
PT ′RF→T ′′F′

1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T |ψi〉RS |0〉F

∥∥∥∥∥∥∥
2

2

. (B.5)

Setting

P0
R→F′ B 〈0|T ′′PT ′RF→T ′′F′ |0〉T ′ |0〉F , (B.6)

P1
R→F′ B 〈1|T ′′PT ′RF→T ′′F′ |1〉T ′ |0〉F , (B.7)

we have that

1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T |ψi〉RS |0〉F

∥∥∥∥∥∥∥
2

2

=
1
4

∥∥∥∥∥∥∥ ∑
i∈{0,1}

Pi
R→F′ |ψ

i〉RS

∥∥∥∥∥∥∥
2

2

(B.8)

=
1
4

∑
i, j∈{0,1}

〈ψi|RS (Pi
R→F′)

†P j
R→F′ |ψ

j〉RS (B.9)

≤
1
2

(
1 + Re

{
〈ψ0|RS (P0

R→F′)
†P1

R→F′ |ψ
1〉RS

})
(B.10)

≤
1
2

(
1 +

∣∣∣〈ψ0|RS (P0
R→F′)

†P1
R→F′ |ψ

1〉RS

∣∣∣) . (B.11)

The first inequality follows because Pi
R→F′ is a contraction for i ∈ {0, 1}, so that

(Pi
R→F′)

†Pi
R→F′ ≤ IF′ . Then consider that

∣∣∣〈ψ0|RS (P0
R→F′)

†P1
R→F′ |ψ

1〉RS

∣∣∣ =≤ max
P0,P1


∣∣∣〈ψ0|RS (P0

R→F′)
†P1

R→F′ |ψ
1〉RS

∣∣∣
:
∥∥∥Pi

∥∥∥
∞
≤ 1 ∀i

 (B.12)

=
√

F(ρ0
S , ρ

1
S ). (B.13)

The last line is a consequence of the following reasoning (which is the same as that
employed in Section III in [CHM+16]). The inequality

max
P0,P1


∣∣∣〈ψ0|RS (P0

R→F′)
†P1

R→F′ |ψ
1〉RS

∣∣∣
:
∥∥∥Pi

∥∥∥
∞
≤ 1 ∀i

 ≥ √F(ρ0
S , ρ

1
S ) (B.14)

holds because the isometries P0
R→F′ and P1

R→F′ that achieve the maximum for the
fidelity are each contractions and the optimization is conducted over all contrac-
tions. The opposite inequality

max
P0,P1


∣∣∣〈ψ0|RS (P0

R→F′)
†P1

R→F′ |ψ
1〉RS

∣∣∣
:
∥∥∥Pi

∥∥∥
∞
≤ 1 ∀i

 ≤ √F(ρ0
S , ρ

1
S ) (B.15)
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is a consequence of the fact that every contraction can be written as a convex
combination of isometries [Zha11, Theorem 5.10]. Indeed, this means that, for
each i ∈ {0, 1},

Pi
R→F′ =

∑
x

pi(x)W i,x
R→F′ , (B.16)

where {pi(x)}x is a probability distribution and W i,x
R→F′ is an isometry, for each i and

x. Then we find that

∣∣∣〈ψ0|RS (P0
R→F′)

†P1
R→F′ |ψ

1〉RS

∣∣∣ =

∣∣∣∣∣∣∣ 〈ψ0|RS

(∑
x p0(x)W0,x

R→F′

)†
×(∑

x′ p1(x′)W1,x′
R→F′

)
|ψ1〉RS

∣∣∣∣∣∣∣ (B.17)

=

∣∣∣∣∣∣∣∑x,x′ p0(x)p1(x′)〈ψ0|RS

(
W0,x

R→F′

)†
W1,x′

R→F′ |ψ
1〉RS

∣∣∣∣∣∣∣ (B.18)

≤
∑
x,x′

p0(x)p1(x′)
∣∣∣∣〈ψ0|RS

(
W0,x

R→F′

)†
W1,x′

R→F′ |ψ
1〉RS

∣∣∣∣ (B.19)

≤ max
x,x′

∣∣∣∣〈ψ0|RS

(
W0,x

R→F′

)†
W1,x′

R→F′ |ψ
1〉RS

∣∣∣∣ (B.20)

≤
√

F(ρ0
S , ρ

1
S ). (B.21)

Thus, an upper bound on the acceptance probability of Algorithm 3.4 is as follows:

1
2

(
1 +
√

F(ρ0
S , ρ

1
S )

)
. (B.22)

This upper bound can be achieved if the prover applies a unitary extension of the
following isometry:

PT ′RF→T ′′F′ =
∑

i∈{0,1}

|i〉T ′′〈i|T ′ ⊗ Pi
R→F′ ⊗ 〈0|F , (B.23)

where P0
R→F′ and P1

R→F′ are isometries achieving the maximum in the fidelity
F(ρ0

S , ρ
1
S ).

B.2 Proof of Theorem 3.2

Proof of Theorem 3.2. After Step 1 of Algorithm 3.5, the global state is

|Φ〉T ′T |0〉R1S 1R2S 2 . (B.24)
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After Step 2, the global state is

|Φ〉T ′T |ψ
ρ0
〉R1S 1 |ψ

ρ1
〉R2S 2 . (B.25)

After Step 3, it becomes

1
√

2
|0〉T |0〉T ′ |ψρ

0
〉R1S 1 |ψ

ρ1
〉R2S 2 +

1
√

2
|1〉T |1〉T ′ |ψρ

1
〉R2S 1 |ψ

ρ0
〉R1S 2 . (B.26)

The verifier then sends systems T ′, R1, and R2 to the prover, who appends the
state |0〉F and acts with a unitary PT ′R1R2F→T ′′F′ . Without loss of generality, and
for simplicity of the ensuing analysis, we can imagine that before applying the
unitary PT ′R1R2F→T ′′F′ , the prover applies a controlled SWAP to systems T ′, R1, and
R2, so that the state before applying PT ′R1R2F→T ′′F′ is as follows:

1
√

2
|0〉T |0〉T ′ |ψρ

0
〉R1S 1 |ψ

ρ1
〉R2S 2 +

1
√

2
|1〉T |1〉T ′ |ψρ

1
〉R1S 1 |ψ

ρ0
〉R2S 2 . (B.27)

This follows because the prover can apply arbitrary unitaries to his received sys-
tems, and one such possible unitary is to apply this controlled SWAP, undo it, and
then apply PT ′R1R2F→T ′′F′ . However, the latter two unitaries are a particular exam-
ple of a unitary PT ′R1R2F→T ′′F′ . So we proceed with the ensuing analysis assuming
that the global state, before the prover applies PT ′R1R2F→T ′′F′ , is given by (B.27).
Note that the actions of tensoring in the state |0〉F and applying PT ′R1R2F→T ′′F′ to-
gether constitute an isometry

PT ′R1R2→T ′′F′ B PT ′R1R2F→T ′′F′ |0〉F , (B.28)

resulting in the state

1
√

2
PT ′R1R2→T ′′F′ |0〉T |0〉T ′ |ψρ

0
〉R1S 1 |ψ

ρ1
〉R2S 2 +

1
√

2
PT ′R1R2→T ′′F′ |1〉T |1〉T ′ |ψρ

1
〉R1S 1 |ψ

ρ0
〉R2S 2 .

(B.29)
Let us set

P00
R1R2→F′ B 〈0|T ′′PT ′R1R2→T ′′F′ |0〉T ′ , (B.30)

P11
R1R2→F′ B 〈1|T ′′PT ′R1R2→T ′′F′ |1〉T ′ . (B.31)
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The verifier finally performs a Bell measurement and accepts if and only if the
outcome ΦT ′′T occurs. The acceptance probability is then∥∥∥∥∥∥〈Φ|TT ′′

1
√

2

(
|0〉T PT ′R1R2→T ′′F′ |0〉T ′ |ψρ0〉R1S 1 |ψ

ρ1〉R2S 2 + |1〉T PT ′R1R2→T ′′F′ |1〉T ′ |ψρ1〉R1S 1 |ψ
ρ0〉R2S 2

)∥∥∥∥∥∥2

2

=
1
4

∥∥∥〈0|T ′′PT ′R1R2→T ′′F′ |0〉T ′ |ψρ0〉R1S 1 |ψ
ρ1〉R2S 2 + 〈1|T ′′PT ′R1R2→T ′′F′ |1〉T ′ |ψρ1〉R1S 1 |ψ

ρ0〉R2S 2

∥∥∥2

2

(B.32)

=
1
4

∥∥∥P00
R1R2→F′ |ψ

ρ0〉R1S 1 |ψ
ρ1〉R2S 2 + P11

R1R2→F′ |ψ
ρ1〉R1S 1 |ψ

ρ0〉R2S 2

∥∥∥2

2
(B.33)

=
1
4


〈ψρ0 |R1S 1〈ψ

ρ1 |R2S 2

(
P00

R1R2→F′

)†
P00

R1R2→F′ |ψ
ρ0〉R1S 1 |ψ

ρ1〉R2S 2

+〈ψρ1 |R1S 2〈ψ
ρ0 |R2S 1

(
P11

R1R2→F′

)†
P11

R1R2→F′ |ψ
ρ1〉R1S 1 |ψ

ρ0〉R2S 2

+〈ψρ0 |R1S 1〈ψ
ρ1 |R2S 2

(
P00

R1R2→F′

)†
P11

R1R2→F′ |ψ
ρ1〉R1S 1 |ψ

ρ0〉R2S 2

+〈ψρ1 |R1S 1〈ψ
ρ0 |R2S 2

(
P11

R1R2→F′

)†
P00

R1R2→F′ |ψ
ρ0〉R1S 1 |ψ

ρ1〉R2S 2


(B.34)

≤
1
4

(
2 + 2 Re

{
〈ψρ0 |R1S 1〈ψ

ρ1 |R2S 2

(
P00

R1R2→F′
)†

P11
R1R2→F′ |ψ

ρ1〉R1S 1 |ψ
ρ0〉R2S 2

})
(B.35)

≤
1
4

(
2 + 2

∣∣∣∣〈ψρ0 |R1S 1〈ψ
ρ1 |R2S 2

(
P00

R1R2→F′
)†

P11
R1R2→F′ |ψ

ρ1〉R1S 1 |ψ
ρ0〉R2S 2

∣∣∣∣) (B.36)

=
1
2

(
1 +

∣∣∣∣〈ψρ0 |R1S 1〈ψ
ρ1 |R2S 2

(
P00

R1R2→F′
)†

P11
R1R2→F′ |ψ

ρ1〉R1S 1 |ψ
ρ0〉R2S 2

∣∣∣∣) (B.37)

≤
1
2

(
1 + max

UR1R2

∣∣∣〈ψρ0 |R1S 1〈ψ
ρ1 |R2S 2UR1R2 |ψ

ρ1〉R1S 1 |ψ
ρ0〉R2S 2

∣∣∣) . (B.38)

The steps given above follow for reasons very similar to those given in the proof
of Theorem 3.1. Continuing, we find that

Eq. (B.38) =
1
2

(
1 +

√
F(ρ0 ⊗ ρ1, ρ1 ⊗ ρ0)

)
(B.39)

=
1
2

(
1 +

√
F(ρ0, ρ1)F(ρ1, ρ0)

)
(B.40)

=
1
2

(
1 + F(ρ0, ρ1)

)
, (B.41)

where we used the multiplicativity of the fidelity for tensor-product states to get
(B.40) and the symmetric property of fidelity to arrive at (B.41). Thus, we have
established (3.25) as an upper bound on the acceptance probability. This upper

322



bound can be achieved by setting F′ ' R1R2 and

PT ′R1R2F→T ′′F′ = |0〉T ′′〈0|T ′ ⊗ IR1R2→F′ ⊗ 〈0|F (B.42)

+ |1〉T ′′〈1|T ′ ⊗ UR1 ⊗ U†R2
⊗ 〈0|F , (B.43)

where UR1 is a unitary that achieves the fidelity for F(ρ0, ρ1), so that
√

F(ρ0, ρ1) = 〈ψρ
0
|R1S 1UR1 |ψ

ρ1
〉R1S 1 . (B.44)

This concludes the proof.

B.3 Proof of Theorem 3.3

Proof of Theorem 3.3. After Step 1 of Algorithm 3.8, the global state is

|Φ〉T ′T |ψ〉RA|0〉E′ . (B.45)

After Step 2 of Algorithm 3.8, it is

1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|0〉E′ , (B.46)

where U i ≡ U i
AE′→BE for i ∈ {0, 1}. After Step 4 of Algorithm 3.8, it is

P

 1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|00〉E′F

 , (B.47)

where P ≡ PT ′EF→T ′′F′ . For a fixed unitary PT ′EF→T ′′F′ of the max-prover and fixed
state |ψ〉RA of the min-prover, the acceptance probability is then∥∥∥∥∥∥∥〈Φ|T ′′T P

 1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|00〉E′F


∥∥∥∥∥∥∥

2

2

=
1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥∥
2

2

, (B.48)

In a competing-provers quantum interactive proof, the max-prover is trying to
maximize the probability that the verifier accepts, while the min-prover is trying
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to minimize the acceptance probability. Since the max-prover plays second in this
game, the acceptance probability of Algorithm 3.8 is given by

min
|ψ〉RA

max
P

1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|ii〉T ′T U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥∥
2

2

. (B.49)

Applying the analysis of Theorem 3.1, it follows that

max
P

1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|ii〉T ′T U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥∥
2

2

=
1
2

(
1 +
√

F(N0
A→B(ψRA),N1

A→B(ψRA))
)
. (B.50)

Thus, after applying the minimization over every input state ψRA, the claim in
(3.62) follows.

B.4 Proof of Theorem 3.4

Proof of Theorem 3.4. After Step 2 of Algorithm 3.9, the global state is

|Φ〉T ′T |ψ〉RA|0〉E′ . (B.51)

After Step 3, the global state is

1
√

2

∑
i∈{0,1}

|i〉T ′ |i〉T U i
AE′→BE |ψ〉RA|0〉E′ . (B.52)

After Step 5, it is
1
√

2
P

∑
i∈{0,1}

|i〉T ′ |i〉T U i
AE′→BE |ψ〉RA|0〉E′ , (B.53)

where P ≡ PT ′EF→T ′′F′ . For a fixed state |ψ〉RA and unitary PT ′EF→T ′′F′ of the prover,
the acceptance probability is

1
2

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T U i
AE′→BE |ψ〉RA|0〉E′

∥∥∥∥∥∥∥
2

2

. (B.54)
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In a QIP algorithm, the prover chooses his actions in order to maximize the accep-
tance probability, so that the acceptance probability is

1
2

sup
|ψ〉RA,

P

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T U i
AE′→BE |ψ〉RA|0〉E′

∥∥∥∥∥∥∥
2

2

. (B.55)

By the same reasoning employed in the proof of Theorem 3.1, we conclude that

1
2

sup
P

∥∥∥∥∥∥∥〈Φ|T ′′T P
∑

i∈{0,1}

|i〉T ′ |i〉T U i
AE′→BE |ψ〉RA|0〉E′

∥∥∥∥∥∥∥
2

2

=
1
2

(
1 +
√

F(N0
A→B(ρA),N1

A→B(ρA))
)
, (B.56)

where ρA is the reduced state of ψRA (i.e., TrR[ψRA] = ρA). Now including the opti-
mization over every pure state ψRA, we conclude the claim in (3.70).

B.5 Proof of Theorem 3.5

Proof of Theorem 3.5. After Step 2 of Algorithm 3.10, the global state is∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS . (B.57)

After Step 4, it is
P

∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS |0〉F , (B.58)

where P ≡ PT ′RF→T ′′F′ . Then, for a fixed unitary PT ′RF→T ′′F′ , the acceptance proba-
bility is∥∥∥∥∥∥∥〈Φ|T ′′T P

∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS |0〉F

∥∥∥∥∥∥∥
2

2

=

sup
|ϕ〉F′S

∣∣∣∣∣∣∣〈Φ|T ′′T 〈ϕ|F′S P
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS |0〉F

∣∣∣∣∣∣∣
2

, (B.59)
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where the optimization is over every pure state |ϕ〉F′S and we have used the fact
that ‖|φ〉‖22 = sup|ψ〉:‖|ψ〉‖2=1 |〈ψ|φ〉|

2. This implies that the acceptance probability is
given by

sup
|ϕ〉F′S ,P

∣∣∣∣∣∣∣〈Φ|T ′′T 〈ϕ|F′S P
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS |0〉F

∣∣∣∣∣∣∣
2

. (B.60)

Recall Uhlmann’s theorem [Uhl76], which is the statement that

F(ωC, τC) = sup
VB

|〈ϕτ|BCVB ⊗ IC |ϕ
ω〉BC |

2 , (B.61)

where ωC and τC are density operators with respective purifications |ϕω〉BC and
|ϕτ〉BC and the optimization is over every unitary VB. Observing that the unitary
PT ′RF→T ′′F′ acts on systems T ′RF of

∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS |0〉F and systems T ′′F′ of

|Φ〉T ′′T |ϕ〉F′S , that their respective reduced states on systems TS are∑
x∈X

p(x)|x〉〈x|T ⊗ ρx
S , (B.62)

πT ⊗ σS , (B.63)

where πT is the maximally mixed state and σS B TrF′[ϕF′S ], and applying
Uhlmann’s theorem, we conclude that the acceptance probability is given by

sup
σS

F

∑
x∈X

p(x)|x〉〈x|T ⊗ ρx
S , πT ⊗ σS

 (B.64)

=

sup
σS

√
F

∑
x∈X

p(x)|x〉〈x|T ⊗ ρx
S , πT ⊗ σS

2

(B.65)

=
1
d

sup
σS

∑
x∈X

√
p(x)
√

F
(
ρx

S , σS
)2

. (B.66)

In the second equality, we made use of the direct-sum property of the root fidelity
[KW20, Proposition 4.29]. We note here that the analysis employed is the same as
that used to show that the CLOSE-IMAGE problem is QIP(2)-complete [HMW14].

We can also write the acceptance probability as∥∥∥∥∥∥∥〈Φ|T ′′T P
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS |0〉F

∥∥∥∥∥∥∥
2

2

=
1
d

∥∥∥∥∥∥∥∑x∈X
√

p(x)Px
R→F′ |ψ

x〉RS

∥∥∥∥∥∥∥
2

2

(B.67)
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where we have defined

Px
R→F′ B 〈x|T ′′PT ′RF→T ′′F′ |x〉T ′ |0〉F . (B.68)

The upper bound in (3.79) follows because

1
d

∥∥∥∥∥∥∥∑x∈X
√

p(x)Px
R→F′ |ψ

x〉RS

∥∥∥∥∥∥∥
2

2

=
1
d

∑
x,y∈X

√
p(x)p(y)〈ψx|RS (Px

R→F′)
†Py

R→F′ |ψ
y〉RS (B.69)

=
1
d

∑
x∈X

p(x)〈ψx|RS (Px
R→F′)

†Px
R→F′ |ψ

x〉RS

+
2
d

∑
x,y∈X
:x<y

√
p(x)p(y) Re[〈ψx|RS (Px)†Py|ψy〉RS ] (B.70)

≤
1
d

+
2
d

∑
x,y∈X:x<y

√
p(x)p(y)

√
F(ρx

S , ρ
y
S ) (B.71)

where the first equality follows by expanding the norm, the second by splitting
the terms into those for which x = y and x < y, and the inequality follows because
(Px

R→F′)
†Px

R→F′ ≤ IR and from reasoning similar to that in the proof of Theorem 3.1.

The final statement about tightness of the upper bound for the case d = 2
follows by picking Px and Py for x < y to be isometries from Uhlmann’s theorem,
as was done at the end of the proof of Theorem 3.1.

B.6 Proof of Theorem 3.6

Proof of Theorem 3.6. We can employ the result of Theorem 3.5. For a fixed state
ψRA of the min-prover, the acceptance probability is equal to

1
d

sup
σRB

∑
x∈X

√
p(x)
√

F(N x
A→B(ψRA), σRB)

2

, (B.72)

as a consequence of Theorem 3.5. Thus, we arrive at the claim in (3.86) by mini-
mizing over every state ψRA of the min-prover.
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The upper bound in (3.87) follows from the upper bound in (3.79). Indeed, for
a fixed state ψRA of the min-prover, the acceptance probability in (B.72) is bounded
from above by

1
d

+
2
d

∑
x,y∈X:

x<y

√
p(x)p(y)

√
F(N x

A→B(ψRA),N y
A→B(ψRA)). (B.73)

After taking infima, we arrive at (3.87).

The final statement follows from the same reasoning employed at the end of
the proof of Theorem 3.5.

B.7 Number of samples for Fidelity-Pure-Pure

In Theorem 3.8, we argued that the problem Fidelity-Pure-Pure is BQP-complete;
i.e., every problem in BQP can be reduced to this problem in polynomial time.
In this section, we discuss the number of samples required to obtain a desired
accuracy and confidence. Let us first recall Hoeffding’s bound.

Lemma B.1 [Hoeffding’s Bound [Hoe63]]. Suppose that we are given n independent
samples Y1, . . . ,Yn of a bounded random variable Y taking values in the interval [a, b] and
having mean µ. Set

Yn B
1
n

(Y1 + . . . + Yn) (B.74)

to be the sample mean. Let ε ∈ (0, 1) be the desired accuracy, and let 1 − δ be the desired
success probability, where δ ∈ (0, 1). Then

Pr[|Yn − µ| ≤ ε] ≥ 1 − δ, (B.75)

as long as

n ≥
M2

2ε2 ln
(
2
δ

)
, (B.76)

where M B b − a.

In the main text, we mapped a general BQP algorithm to Fidelity-Pure-Pure.
In a general BQP algorithm, we measure a single qubit called the decision qubit,
leading to a random variable Y taking the value 0 with probability 1 − p and the
value 1 with probability p, where p is the acceptance probability of the algorithm.
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We repeat this procedure n times and label the outcomes Y1, . . . ,Yn. We output the
mean

Yn =
1
n

(Y1 + . . . + Yn) (B.77)

as an estimate for the true value p (as seen in (3.131))

p = 〈x|S 〈0|A Q†(|1〉〈1|D ⊗ IG)Q |x〉S |0〉A . (B.78)

By plugging into Lemma B.1, setting

µ = p (B.79)

therein, and taking n to satisfy the condition n ≥ 1
2ε2 ln

(
2
δ

)
, we can achieve an error

ε and confidence δ (as defined in (B.75)).

Now, we see from (3.134) that the modified algorithm has an acceptance prob-
ability p2, i.e., equal to the square of the original BQP problem’s acceptance prob-
ability. In the modified algorithm, we measure the decision qubit, leading to a
random variable Z taking value 0 with probability 1 − p2 and the value 1 with
probability p2. We repeat the procedure m times and label the outcomes Z1, . . . ,Zm.
We output the mean

Zm =
1
m

(Z1 + . . . + Zm) (B.80)

as an estimate for the true value p2 (as seen in (3.134)). Setting µ̃ = p2, and plug-
ging into Lemma B.1, it follows that

Pr[|Zm − µ̃| ≤ ε
2] ≥ 1 − δ, (B.81)

if

m ≥
1

2ε4 ln
(
2
δ

)
. (B.82)

Consider the following inequalities:

ε2 ≥
∣∣∣Zm − µ̃

∣∣∣
=

∣∣∣Zm − µ
2
∣∣∣

=

∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣
∣∣∣∣∣∣
√

Zm + µ

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣2 , (B.83)
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where the second inequality is derived from the fact that Zm, µ ∈ [0, 1], so that∣∣∣Zm + µ
∣∣∣ ≥ ∣∣∣Zm − µ

∣∣∣. Thus, ∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣ ≤ ε. (B.84)

In other words,

ε2 ≥
∣∣∣Zm − µ

2
∣∣∣ =⇒ ε ≥

∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣ (B.85)

so that

Pr
[∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣ ≤ ε
]
≥ Pr[

∣∣∣Zm − µ
2
∣∣∣ ≤ ε2]

≥ 1 − δ. (B.86)

Thus,
√

Zm is an estimator for p and taking

m ≥
1

2ε4 ln
(
2
δ

)
(B.87)

suffices to achieve an error ε and confidence δ in estimating p.
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Appendix C

Supplementary material of Chapter 4

C.1 Proof of Theorem 4.1

We give the proof for completeness, and we note here that it is very close to the
proof of [CKMR07, Lemma II.5] (see also [KW20, Lemma 3.6]).

We begin with the forward implication. Suppose that ρS is G-symmetric ex-
tendible. By definition, this means that there exists a state ωRS satisfying (4.5) and
(4.6). Suppose that ωRS has the following spectral decomposition:

ωRS =
∑

k

λkΠ
k
RS , (C.1)

where λk is an eigenvalue and Πk
RS is a spectral projection. We can write Πk

RS as

Πk
RS =

∑
`

|φk
`〉〈φ

k
` |RS , (C.2)

where {|φk
`〉RS }` is an orthonormal basis. Now define

|Γk〉RS R̂Ŝ B
∑
`

|φk
`〉RS ⊗ |φ

k
`〉R̂Ŝ , (C.3)

|ψρ〉RS R̂Ŝ B
∑

k

√
λk|Γ

k〉RS R̂Ŝ , (C.4)
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where |φk
`〉R̂Ŝ is the complex conjugate of |φk

`〉RS with respect to the standard basis.
Observe that |ψρ〉〈ψρ|RS R̂Ŝ is a purification of ωRS . Now let us establish (4.20). Given
that ωRS satisfies (4.6), it follows that

URS (g)†ωRS URS (g)|φk
`〉RS = ωRS |φ

k
`〉RS (C.5)

= λk|φ
k
`〉RS , (C.6)

for all k, `, and g. Left multiplying by URS (g) implies that

ωRS URS (g)|φk
`〉RS = λkURS (g)|φk

`〉RS , (C.7)

so that URS (g)|φk
`〉RS is an eigenvector of ωRS with eigenvalue λk. We conclude that

the kth eigenspace corresponding to eigenvalue λk is invariant under the action of
URS (g) because |φk

`〉RS and URS (g)|φk
`〉RS are eigenvectors of ωRS with eigenvalue λk.

This implies that the restriction of URS (g) to the kth eigenspace is equivalent to a
unitary Uk

RS (g). Then it follows that

(URS (g) ⊗ U R̂Ŝ (g))|Γk〉RS R̂Ŝ

= (Uk
RS (g) ⊗ U

k
R̂Ŝ (g))|Γk〉RS R̂Ŝ (C.8)

= |Γk〉RS R̂Ŝ , (C.9)

for all g ∈ G. The first equality follows from the fact stated just above. The second
equality follows from the invariance of the maximally entangled vector |Γk〉RS R̂Ŝ

under unitaries of the form V ⊗ V . Thus, it follows by linearity that

|ψρ〉RS R̂Ŝ = (URS (g) ⊗ U R̂Ŝ (g))|ψρ〉RS R̂Ŝ , (C.10)

for all g ∈ G, which is the statement of (4.20).

Let us now consider the opposite implication. Suppose that ψρ
RS R̂Ŝ

is a purifica-
tion of ρS and ψ

ρ

RS R̂Ŝ
satisfies (4.20). Set

ωRS = TrR̂Ŝ [ψρ
RS R̂Ŝ

]. (C.11)

Then ωRS is an extension of ρS . Furthermore, employing the shorthand URS ≡
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URS (g) and U R̂Ŝ ≡ U R̂Ŝ (g), we find thatωRS = URS (g)ωRS URS (g)† for all g ∈ G because

ωRS

= TrR̂Ŝ [ψρ
RS R̂Ŝ

] (C.12)

= TrR̂Ŝ [(URS ⊗ U R̂Ŝ )ψρ
RS R̂Ŝ

(URS ⊗ U R̂Ŝ )†] (C.13)

= URS (g) TrR̂Ŝ [U R̂Ŝ (g)ψρ
RS R̂Ŝ

U R̂Ŝ (g)†]URS (g)† (C.14)

= URS (g) TrR̂Ŝ [U R̂Ŝ (g)†U R̂Ŝ (g)ψρ
RS R̂Ŝ

]URS (g)† (C.15)

= URS (g) TrR̂Ŝ [ψρ
RS R̂Ŝ

]URS (g)† (C.16)

= URS (g)ωRS URS (g)†. (C.17)

Thus, it follows that ρS is G-symmetric extendible.

We now justify the equivalence of (4.20) and (4.21). Using the result in (C.10),
observe that

|ψρ〉RS R̂Ŝ =
1
|G|

∑
g∈G

(URS (g) ⊗ U R̂Ŝ (g))|ψρ〉RS R̂Ŝ , (C.18)

which simplifies to (4.21) by substituting in (4.22). Now starting with (4.22), let us
apply the property in (4.10), and we have that

|ψρ〉RS R̂Ŝ = (URS (g) ⊗ U R̂Ŝ (g))ΠG
RS R̂Ŝ
|ψρ〉RS R̂Ŝ , (C.19)

for all g ∈ G. This reduces to (4.20) by applying (4.21).

C.2 Proof of Theorem 4.2

Let ψRS be an arbitrary purification of ρS , and consider that

Tr[ΠG
S ρS ] = Tr[(IR ⊗ ΠG

S )ψRS ] (C.20)

=
∥∥∥∥(IR ⊗ ΠG

S

)
|ψ〉RS

∥∥∥∥2

2
. (C.21)

Recall the following property of the norm of an arbitrary vector |ϕ〉:

‖|ϕ〉‖22 = max
|φ〉:‖|φ〉‖2=1

|〈φ|ϕ〉|2 . (C.22)
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This follows from the Cauchy–Schwarz inequality and the conditions for saturat-
ing it. This implies that∥∥∥∥(IR ⊗ ΠG

S

)
|ψ〉RS

∥∥∥∥2

2
= max
|φ〉:‖|φ〉‖2=1

∣∣∣∣〈φ|RS

(
IR ⊗ ΠG

S

)
|ψ〉RS

∣∣∣∣2 (C.23)

Let us also recall Uhlmann’s theorem [Uhl76]: For positive semi-definite operators
ωA and τA and corresponding rank-one operators ψωRA and ψτRA satisfying

TrR[ψωRA] = ωA, (C.24)
TrR[ψτRA] = τA, (C.25)

Uhlmann’s theorem [Uhl76] states that

F(ωA, τA) =
∥∥∥√ωA

√
τA

∥∥∥2

1
(C.26)

= max
VR
|〈ψω|RA (VR ⊗ IA) |ψτ〉RA|

2 , (C.27)

where the optimization is over every unitary VR acting on the reference system
R. We also implicitly defined fidelity more generally for positive semi-definite
operators. Considering that

ρS = TrR[ψRS ], σS B TrR[φRS ], (C.28)

so that
ΠG

SσS ΠG
S = TrR[ΠG

S φRS ΠG
S ], (C.29)

we conclude that

max
|φ〉:‖|φ〉‖2=1

∣∣∣∣〈φ|RS

(
IR ⊗ ΠG

S

)
|ψ〉RS

∣∣∣∣2
= max
|φ〉:‖|φ〉‖2=1

max
UR

∣∣∣∣〈φ|RS

(
UR ⊗ ΠG

S

)
|ψ〉RS

∣∣∣∣2 (C.30)

= max
σS ∈D(HS )

F(ρS ,Π
G
SσS ΠG

S ). (C.31)

where the last equality follows from Uhlmann’s theorem with the identifications
|ψω〉 ↔ (I ⊗ ΠG) |φ〉 and |ψτ〉 ↔ |ψ〉. Clearly, we have that

max
σS ∈D(HS )

F(ρS ,Π
G
SσS ΠG

S )

≥ max
σ∈B-SymG

F(ρS ,Π
G
SσS ΠG

S ) (C.32)

= max
σ∈B-SymG

F(ρS , σS ), (C.33)
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because B-SymG ⊂ D(H). Now let us consider showing the opposite inequality.
Let σ ∈ D(H). If ΠGσΠG = 0, then this is a suboptimal choice as it follows that the
objective function F(ρS ,Π

G
SσS ΠG

S ) = 0 in this case. So, let us suppose this is not the
case. Then define

σ′ B
1
p

ΠGσΠG, (C.34)

p B Tr[ΠGσ], (C.35)

and observe that σ′S ∈B-SymG. Consider that

F(ρS ,Π
G
SσS ΠG

S ) = pF(ρS , σ
′
S ) (C.36)

≤ F(ρS , σ
′
S ) (C.37)

≤ max
σS ∈B-SymG

F(ρS , σS ). (C.38)

We have thus proved the opposite inequality, concluding the proof.

C.3 Proof of Theorem 4.3

The formula in (C.22) implies that

max
VS ′E→Ŝ E′

∥∥∥ΠG
S Ŝ

VS ′E→Ŝ E′ |ψ〉S ′S |0〉E
∥∥∥2

2
= max

VS ′E→Ŝ E′ ,
|φ〉S Ŝ E′

∣∣∣〈φ|S Ŝ E′Π
G
S Ŝ

VS ′E→Ŝ E′ |ψ〉S ′S |0〉E
∣∣∣2 . (C.39)

Applying Uhlmann’s theorem (see (C.24)–(C.27)) to (C.39) with the identifications
R↔ Ŝ E′ ' S ′E and S ↔ A and noting that

TrS ′E[|ψ〉〈ψ|S ′S ⊗ |0〉〈0|E] = ρS , (C.40)

TrŜ E′[Π
G
S Ŝ
|φ〉〈φ|S Ŝ E′Π

G
S Ŝ

] = TrŜ [ΠG
S Ŝ
σS Ŝ ′Π

G
S Ŝ

], (C.41)

where σS Ŝ ′ is a quantum state satisfying σS Ŝ ′ = TrE′[|φ〉〈φ|S Ŝ E′], we conclude that

max
VS ′E→Ŝ E′ ,
|φ〉S Ŝ E′

∣∣∣〈φ|S Ŝ E′Π
G
S Ŝ

VS ′E→Ŝ E′ |ψ〉S ′S |0〉E
∣∣∣2 = max

σS Ŝ ′
F(ρS ,TrŜ [ΠG

S Ŝ
σS Ŝ ′Π

G
S Ŝ

]), (C.42)

with the optimization in the last line over every quantum state σS Ŝ ′ .
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We finally prove that

max
σS Ŝ ′

F(ρS ,TrŜ [ΠG
S Ŝ
σS Ŝ ′Π

G
S Ŝ

]) = max
σS ∈SymG

F(ρS , σS ). (C.43)

To justify the inequality ≥ in (C.43), let σS ∈ SymG, and pick σS Ŝ to be the purifica-
tion ϕS Ŝ of σS from Theorem 4.1 (with trivial reference systems RR̂) that satisfies

ΠG
S Ŝ
ϕS Ŝ ΠG

S Ŝ
= ϕS Ŝ . (C.44)

Then we find that
TrŜ [ΠG

S Ŝ
ϕS Ŝ ΠG

S Ŝ
] = TrŜ [ϕS Ŝ ] = σS , (C.45)

and so, given that σS ∈ SymG is arbitrary, it follows that

max
σS Ŝ ′

F(ρS ,TrŜ [ΠG
S Ŝ
σS Ŝ ′Π

G
S Ŝ

]) ≥ max
σS ∈SymG

F(ρS , σS ). (C.46)

To justify the inequality ≤ in (C.43), let σS Ŝ be an arbitrary state. If σS Ŝ ′ is outside
of the subspace onto which ΠG

S Ŝ
projects, then ΠG

S Ŝ
σS Ŝ ′Π

G
S Ŝ

= 0 and the fidelity in
(C.42) is equal to zero. Let us then suppose that this is not the case, and let us
define

σ′S Ŝ B
1
p

ΠG
S Ŝ
σS Ŝ ′Π

G
S Ŝ
, (C.47)

p B Tr[ΠG
S Ŝ
σS Ŝ ′]. (C.48)

Then we find that

F(ρS ,TrŜ [ΠG
S Ŝ
σS Ŝ ′Π

G
S Ŝ

]) = pF(ρS , τS ) (C.49)

≤ F(ρS , τS ), (C.50)

where
τS B TrŜ [σ′S Ŝ ], (C.51)

and we used the fact that p ≤ 1. It remains to be proven that τS ∈ SymG. To see
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this, consider that

τS = TrŜ [σ′S Ŝ ] (C.52)

= TrŜ [ΠG
S Ŝ
σ′S Ŝ ΠG

S Ŝ
] (C.53)

= TrŜ [
(
US ⊗ U Ŝ

)
ΠG

S Ŝ
σ′S Ŝ ΠG

S Ŝ

(
US ⊗ U Ŝ

)†
] (C.54)

= US TrŜ [U Ŝ ΠG
S Ŝ
σ′S Ŝ ΠG

S Ŝ
U
†

Ŝ ]U†S (C.55)

= US TrŜ [U
†

Ŝ U Ŝ ΠG
S Ŝ
σ′S Ŝ ΠG

S Ŝ
]U†S (C.56)

= US TrŜ [ΠG
S Ŝ
σ′S Ŝ ΠG

S Ŝ
]U†S (C.57)

= US (g) TrŜ [σ′S Ŝ ]U†S (g) (C.58)

= US (g)τS U†S (g). (C.59)

where we have used the shorthand US ≡ US (g) and U Ŝ ≡ U Ŝ (g). Since the equality
τS = US (g)τS U†S (g) holds for all g ∈ G, it follows that

max
σS Ŝ ′

F(ρS ,TrŜ [ΠG
S Ŝ
σS Ŝ ′Π

G
S Ŝ

]) ≤ max
τS ∈SymG

F(ρS , σS ), (C.60)

concluding the proof.

C.4 Proof of Theorem 4.4

Following the same reasoning given in (C.39)–(C.42), by using Uhlmann’s theo-
rem, we conclude that

max
VS ′E→RE′

∥∥∥ΠG
RS VS ′E→RE′ |ψ〉S ′S |0〉E

∥∥∥2

2
= max

σRS
F(ρS ,TrR[ΠG

RSσRS ΠG
RS ]), (C.61)

where the optimization is over every state σRS and ΠG
RS is defined in (4.69). The

next part of the proof shows that

max
σRS

F(ρS ,TrR[ΠG
RSσRS ΠG

RS ]) = max
σS ∈BSEG

F(ρS , σS ) (C.62)

and is similar to (C.43)–(C.60). To justify the inequality ≥, let σS be an arbitrary
state in BSEG. Then by Definition 4.4, this means that there exists a state ωRS such
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that TrR[ωRS ] = σS and ΠG
RSωRS ΠG

RS = ωRS . We find that

F(ρS , σS ) = F(ρS ,TrR[ωRS ]) (C.63)

= F(ρS ,TrR[ΠG
RSωRS ΠG

RS ]) (C.64)

≤ max
σRS

F(ρS ,TrR[ΠG
RSσRS ΠG

RS ]), (C.65)

which implies that

max
σRS

F(ρS ,TrR[ΠG
RSσRS ΠG

RS ]) ≥ max
σS ∈BSEG

F(ρS , σS ). (C.66)

To justify the inequality ≤, let σRS be an arbitrary state. If ΠG
RSσRS ΠG

RS = 0, then the
desired inequality trivially follows. Supposing then that this is not the case, let us
define

σ′RS B
1
p

ΠG
RSσRS ΠG

RS , (C.67)

p B Tr[ΠG
RSσRS ]. (C.68)

We then find that

F(ρS ,TrR[ΠG
RSσRS ΠG

RS ])
= pF(ρS ,TrR[σ′RS ]) (C.69)
≤ F(ρS ,TrR[σ′RS ]). (C.70)

Consider that σ′S B TrR[σ′RS ] is G-Bose symmetric extendible because σ′RS is an
extension of it that satisfies ΠG

RSσ
′
RS ΠG

RS = σ′RS . We conclude that

F(ρS ,TrR[ΠG
RSσRS ΠG

RS ]) ≤ max
σS ∈BSEG

F(ρS , σS ). (C.71)

Since this inequality holds for every state σRS , we surmise the desired result

max
σRS

F(ρS ,TrR[ΠG
RSσRS ΠG

RS ]) ≤ max
σS ∈BSEG

F(ρS , σS ). (C.72)

C.5 Proof of Theorem 4.5

Following the same reasoning given in (C.39)–(C.42), by using Uhlmann’s theo-
rem, we conclude that

max
VS ′E→RR̂Ŝ E′

∥∥∥ΠG
RS R̂Ŝ

VS ′E→RR̂Ŝ E′ |ψ〉S ′S |0〉E
∥∥∥2

2
= max

σRR̂S Ŝ

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

]), (C.73)
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where the optimization is over every state σRS R̂Ŝ and ΠG
RS R̂Ŝ

is defined in (4.22).
The next part of the proof shows that

max
σRR̂S Ŝ

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

]) = max
σS ∈SymExtG

F(ρS , σS ) (C.74)

and is similar to (C.43)–(C.60). To justify the inequality ≥, let σS be a state in
SymExtG. Then by Theorem 4.1, there exists a purification ϕRS R̂Ŝ of σS satisfying
ϕRS R̂Ŝ = ΠG

RS R̂Ŝ
ϕRS R̂Ŝ ΠG

RS R̂Ŝ
. We find that

F(ρS , σS )
= F(ρS ,TrRR̂Ŝ [ϕRS R̂Ŝ ]) (C.75)

= F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

ϕRS R̂Ŝ ΠG
RS R̂Ŝ

]) (C.76)

≤ max
σRR̂S Ŝ

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

]). (C.77)

Since the inequality holds for all σS ∈ SymExtG, we conclude that

max
σS ∈SymExtG

F(ρS , σS ) ≤ max
σRR̂S Ŝ

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

]). (C.78)

To justify the inequality ≤, let σRR̂S Ŝ be an arbitrary state. If ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

= 0,
then the desired inequality follows trivially. Supposing this is not the case, then
define

σ′RR̂S Ŝ B
1
p

ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

, (C.79)

p B Tr[ΠG
RS R̂Ŝ

σRR̂S Ŝ ]. (C.80)

Then we find that

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

])

= pF(ρS ,TrRR̂Ŝ [σ′RR̂S Ŝ ]) (C.81)

≤ F(ρS ,TrRR̂Ŝ [σ′RR̂S Ŝ ]) (C.82)

= F(ρS , τS ), (C.83)

where τS B TrRR̂Ŝ [σ′
RR̂S Ŝ

]. We now aim to show that τS ∈ SymExtG. To do so, it
suffices to prove that σ′RS = URS (g)σ′RS URS (g)† for all g ∈ G. Abbreviating U ⊗ U ≡
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URS (g) ⊗ U R̂Ŝ (g), consider that

σ′RS

= TrR̂Ŝ [σ′RS R̂Ŝ ] (C.84)

= TrR̂Ŝ [ΠG
RS R̂Ŝ

σ′RS R̂Ŝ ΠG
RS R̂Ŝ

] (C.85)

= TrR̂Ŝ [(U ⊗ U)ΠG
RS R̂Ŝ

σ′RS R̂Ŝ ΠG
RS R̂Ŝ

(U ⊗ U)†] (C.86)

= U TrR̂Ŝ [UΠG
RS R̂Ŝ

σ′RS R̂Ŝ ΠG
RS R̂Ŝ

U
†
]U† (C.87)

= U TrR̂Ŝ [U
†
UΠG

RS R̂Ŝ
σ′RS R̂Ŝ ΠG

RS R̂Ŝ
]U† (C.88)

= U TrR̂Ŝ [ΠG
RS R̂Ŝ

σ′RS R̂Ŝ ΠG
RS R̂Ŝ

]U† (C.89)

= U TrR̂Ŝ [σ′RS R̂Ŝ ]U† (C.90)

= URS (g)σ′RS URS (g)†. (C.91)

It follows that τS ∈ SymExtG, and we conclude that

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

]) ≤ max
σS ∈SymExtG

F(ρS , σS ). (C.92)

Since the inequality holds for every state σRR̂S Ŝ , we conclude that

max
σRR̂S Ŝ

F(ρS ,TrRR̂Ŝ [ΠG
RS R̂Ŝ

σRR̂S Ŝ ΠG
RS R̂Ŝ

]) ≤ max
σS ∈SymExtG

F(ρS , σS ). (C.93)

C.6 Error and Number of Samples in State-HS-Symmetry

In Theorem 4.7, we proved that the problem State-HS-Symmetry is BQP-
Complete. In this section, we discuss the number of samples required to obtain
the desired accuracy and confidence. To do this, we invoke Hoeffding’s bound
from Lemma B.1.

In Section 4.6.2, we mapped a general BQP algorithm to State-HS-Symmetry.
In a general BQP algorithm, we measure a single qubit called the decision qubit,
leading to a random variable Y taking the value 0 with probability prej and the
value 1 with probability pacc, where pacc is the acceptance probability of the algo-
rithm. We repeat this procedure n times and label the outcomes Y1, . . . ,Yn. We
output the mean

Yn =
1
n

(Y1 + · · · + Yn) (C.94)
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as an estimate for the true value pacc

pacc = 〈x|S 〈0|A Q†(|1〉〈1|D ⊗ IG)Q |x〉S |0〉A . (C.95)

By plugging into Lemma B.1, setting

µ = pacc (C.96)

therein, and taking n to satisfy the condition n ≥ 1
2ε2 ln

(
2
δ

)
, we can achieve an error

ε and confidence δ (as defined in (B.75)).

Now, we see from (4.218) that the modified algorithm has an acceptance prob-
ability 1 − p2

rej, i.e., equal to one minus the square of the original BQP algorithm’s
rejection probability. In the modified algorithm, we measure the decision qubit,
leading to a random variable Z taking value 0 with probability p2

rej and the value 1
with probability 1 − p2

rej. We repeat the procedure m times and label the outcomes
Z1, . . . ,Zm. We output the mean

Zm = 1 −
1
m

(Z1 + · · · + Zm) (C.97)

as an estimate for the true value p2
rej. Setting µ̃ = p2

rej, and plugging into Lemma B.1,
it follows that

Pr[|Zm − µ̃| ≤ ε
2] ≥ 1 − δ, (C.98)

if

m ≥
1

2ε4 ln
(
2
δ

)
. (C.99)

Consider the following inequalities:

ε2 ≥
∣∣∣Zm − µ̃

∣∣∣
=

∣∣∣Zm − µ
2
∣∣∣

=

∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣
∣∣∣∣∣∣
√

Zm + µ

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣2 , (C.100)

where the second inequality is derived from the fact that Zm, µ ∈ [0, 1], so that∣∣∣Zm + µ
∣∣∣ ≥ ∣∣∣Zm − µ

∣∣∣. Thus, ∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣ ≤ ε. (C.101)
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In other words,

ε2 ≥
∣∣∣Zm − µ

2
∣∣∣ =⇒ ε ≥

∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣ (C.102)

so that

Pr
[∣∣∣∣∣∣
√

Zm − µ

∣∣∣∣∣∣ ≤ ε
]
≥ Pr[

∣∣∣Zm − µ
2
∣∣∣ ≤ ε2]

≥ 1 − δ. (C.103)

Thus,
√

Zm is an estimator for prej and taking

m ≥
1

2ε4 ln
(
2
δ

)
(C.104)

suffices to achieve an error ε and confidence δ in estimating prej.
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Appendix D

Supplementary material of Chapter 5

D.1 Definitions and Lemmas

In this section, we introduce new notation that we use throughout the paper. We
also provide a wide range of lemmas and proofs for the results from the main text.

Lemma D.1. Let Oi denote the projector onto the computational basis element i:

Oi B |i〉〈i|, (D.1)

where the right-hand side is understood to be the binary representation of i. For example,
O4 = |100〉〈100|. Furthermore, define Õ j to be the Pauli string composed of I and Z
operators such that the bits of j determine if the operator at each position is Z or I. For a
concrete example, consider that for j = 610 = 1102, each 1 is represented by Z, and each 0
by I. The operator is then given by

Õ6 = ZZI. (D.2)

Then the following equality holds:

Oi =
1
2n

2n−1∑
j=0

(−1)i· jÕ j, (D.3)

where n is the size of the register for O and Õ, and i · j denotes the bit-wise dot-product
modulo 2 of the binary representations of i and j.
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Proof. Let a = a1a2 · · · an. Then

Oa = |a〉〈a|
= |a1〉〈a1| ⊗ · · · ⊗ |an〉〈an|

=

n⊗
i=1

I + (−1)aiZ
2

=
1
2n

2n−1∑
c=0

(−1)a·cÕc, (D.4)

concluding the proof.

Definition D.1 [Projection Operators]. The projector onto a basis element a on qubits f
is defined as

Pa
f B |a〉〈a| f

=
⊗

i=1

|ai〉〈ai| fi .

We also define a projector onto a subspace labelled by b and b̄ on qubits f as follows:

Pb,b̄
f B

(
|b〉〈b| + |b̄〉〈b̄|

)
f
. (D.5)

Definition D.2 [Distance-k operators]. In an n-qubit Gray or binary code (see Sec. 5.3
for definitions), the set of distance-k operators consists of all operators that connect two
bitstrings that differ on k bits:

D(n, k) B {|a〉〈b| + |b〉〈a| : w(a ⊕ b) = k} , (D.6)

where a, b are bitstrings of length n, the variable w denotes the Hamming weight, and ⊕
denotes bit-wise addition modulo 2. For a two-qubit Gray code, an example of a distance-1
operator is

|01〉〈11| + |11〉〈01|. (D.7)

We see that the bitstrings 01 and 11 differ in one position. The Hermitian operator above
connects the two basis elements. The number of distinct distance-k operators is given by

|D(n, k)| =
(
n
k

)
2n−1. (D.8)
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To establish this equality, we first pick the k bits that are different, which can be done in(
n
k

)
ways, the unflipped bits are in one of 2n−k bitstrings, and the flipped bits can be chosen

in 2k−1 ways since the operators connect two bitstrings with k-bits flipped.

Remark D.1. The set D(n, k) of distance-k operators can be split into subsets depending
on the set of k flipped qubits. For example, consider n = 3 and k = 2. The set D(3, 2)
consists of the following operators:

|000〉〈011| + |011〉〈000|,
|001〉〈010| + |010〉〈001|,
|100〉〈111| + |111〉〈100|,
|101〉〈110| + |110〉〈101|,
|000〉〈110| + |110〉〈000|,
|010〉〈100| + |100〉〈010|,
|001〉〈111| + |111〉〈001|,
|011〉〈101| + |101〉〈011|,
|000〉〈101| + |101〉〈000|,
|001〉〈100| + |100〉〈001|,
|010〉〈111| + |111〉〈010|,
|011〉〈110| + |110〉〈011|. (D.9)

As seen in Definition D.2, |D(3, 2)| = 12. We can split up the set of operators into
three sets based on which two qubits are flipped – {2, 3}, {1, 3}, {1, 2}. Thus, the operators
of D(3, 2) are then split as

{2, 3} =

{
|000〉〈011| + |011〉〈000|, |001〉〈010| + |010〉〈001|,

|100〉〈111| + |111〉〈100|, |101〉〈110| + |110〉〈101|.
}
,

{1, 2} =

{
|000〉〈110| + |110〉〈000|, |010〉〈100| + |100〉〈010|,

|001〉〈111| + |111〉〈001|, |011〉〈101| + |101〉〈011|.
}
,

{1, 3} =

{
|000〉〈101| + |101〉〈000|, |001〉〈100| + |100〉〈001|,

|010〉〈111| + |111〉〈010|, |011〉〈110| + |110〉〈011|.
}
. (D.10)
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Since k = 2, each of the above operators can be thought of as two-qubit flips in a
particular subspace. For example, |000〉〈011| + |011〉〈000| acts like IXX in the subspace
spanned by {|000〉 , |011〉} since its action on any state in this subspace is the same as
the action of IXX. This is a unifying feature—any distance-` operator can be thought of
as a product of I (on the unchanged qubits) and X (on the ` flipped qubits) acting on a
particular subspace. Thus, an alternate way to represent the distance operators is as a
composition of a projection onto the subspace of interest, followed by a string consisting of
X and I. For example,

|000〉〈011| + |011〉〈000| = (IXX) ◦ (P0
{1} ⊗ P00,11

{2,3} ),

|001〉〈010| + |010〉〈001| = (IXX) ◦ (P0
{1} ⊗ P01,10

{2,3} ), (D.11)

and the remaining operators can be constructed similarly.

Definition D.3. In Remark D.1, we saw that D(n, k) can be split into subsets depending
on the set of k flipped qubits. We label these subsets with a set f of flipped qubits of size
k. Furthermore, we saw that the distance-k operators can be written as a composition of
a projector onto a particular subspace and a Pauli string consisting of X and I. Thus, we
define the following sets of distance-k operators for a fixed set of k flipped qubits labelled
by f :

D(n, k, f ) B
{(

I f̄ ⊗ X f

)
Pa

f̄ ⊗ Pb,b̄
f : ∀a ∈ {0, 1}| f̄ |, ∀b ∈ {0, 1}| f |

}
, (D.12)

where Pa
f̄

and Pb,b̄
f are defined in Definition D.1.

For example, D(3, 2, {2, 3}) is the set consisting of the following operators:

|000〉〈011| + |011〉〈000| = IXX(P0
{1} ⊗ P00,11

{2,3} ),

|001〉〈010| + |001〉〈010| = IXX(P0
{1} ⊗ P01,10

{2,3} ),

|100〉〈111| + |111〉〈100| = IXX(P1
{1} ⊗ P00,11

{2,3} ),

|101〉〈110| + |101〉〈110| = IXX(P1
{1} ⊗ P01,10

{2,3} ). (D.13)

Motivated by the example above, we also use a shorthand to refer to a particular set
D(n, k, f ) of operators – we define a string of I and X such that for all flipped qubits in f , we
label them by X. Therefore, D(3, 2, {2, 3}) ≡ IXX. We use the notations interchangeably.

Lemma D.2. For an n-qubit Gray or binary code, the distance-k operators are expressed
as a linear combination of a set of Pauli strings that only depends on the set of the k
flipped qubits. Alternatively, a set f of flipped qubits completely determines the set of
Pauli strings.
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Proof. Consider the set D(n, k, f ) of operators where f is the set of flipped qubits.
From Definition D.3, we know that the operators in this set are of the form(

I f̄ ⊗ X f

)
Pa

f̄ ⊗ Pb,b̄
f , (D.14)

where a and b are bitstrings of length | f | = k and | f̄ | = n − k, respectively. On the
flipped qubits, the operator is of the form

X⊗k(|b1 · · · bk〉〈b1 · · · bk| + |b1 · · · bk〉〈b1 · · · bk|), (D.15)

where bi ∈ {0, 1}. We now show that all these operators lead to the same set of
Pauli strings, independent of the values of {bi}i. To show this, consider that

X⊗k(|b1 · · · bk〉〈b1 · · · bk| + |b1 · · · bk〉〈b1 · · · bk|)

= X⊗k(Ob + Ob)

=
1
2k

∑
j

(
(−1)b· j + (−1)b· j

)
X⊗kÕ j, (D.16)

where the second equality follows from Lemma D.1. Upon expanding, we see that
the coefficient of any Õ j is non-zero if and only if the binary representation of j
has even parity. The signs of the different Õ j depend on b, but the set of surviving
Õ j is independent of b. The number of terms left is 2k−1.

Next, if we consider the unflipped qubits, the operators are of the form

|a〉〈a| =
⊗

i

|ai〉〈ai|. (D.17)

Since the two possible cases |0〉〈0| and |1〉〈1| are both linear combinations of I and
Z, and only differ by a negative sign, the set of Pauli strings is independent of a.

To summarize, for a given n and k, all the operators in the set D(n, k, f ) are
composed of the same Pauli strings and different sets f leads to different Pauli
strings. Thus, the set of Pauli strings depends only on the set f , i.e., on the position
of the flipped qubits.

Corollary D.1. As a result of Lemma D.2, we see that if a Hamiltonian contains an
operator from the set D(n, k, f ), any other operator from the same set can be added to the
Hamiltonian without an increase in the number of Pauli terms. Since every operator from
the set D(n, k, f ) consists of the same Pauli strings, adding another operator from the same
set changes only the coefficients, and not the set of Pauli strings themselves.
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Lemma D.3. The set of Pauli strings corresponding to D(n, k, f ) is of size 2n−1.

Proof. Consider the set of operators D(n, k, f ), where f is the set of flipped qubits.
From Definition D.3, we know that the operators in this set are of the form(

I f̄ ⊗ X f

)
Pa

f̄ ⊗ Pb,b̄
f , (D.18)

where a and b are bitstrings of length | f | = k and | f̄ | = n− k, respectively. There are
2n−k possible choices for a and the flipped operator is of size 2k−1, as discussed in
Lemma D.2. Thus, the total number of operators is

2n−k × 2k−1 = 2n−1, (D.19)

concluding the proof.

Definition D.4 [Alternate Representation]. An encoding represents a one-to-one map-
ping between Fock basis elements and computational basis elements. As seen in the main
text, a Gray basis Gn on n bits is a list of 2n basis elements:

Gn = (g0, g1, . . . , g2n−1), (D.20)

where each gi differs from its neighbors by a single bit. Another example considered in
the main text is the binary encoding. The binary basis Bn on n bits is a list of 2n basis
elements:

Bn = (b0, b1, . . . , b2n−1), (D.21)

where bi is the binary representation of the integer i.

A basis encoding can alternatively be represented using a sequence of flipped bits. This
alternate representation is defined as S n. Thus, for an encoding of size 2n, the alternate
representation is of size 2n − 1.

The alternate representation for the Gray code is straightforward. Since any two neigh-
boring entries only have a single bit flipped, the entries of the alternate representation are
the flipped bits. For example, the entry that connects 010 and 011 is 3.

For the binary code, we use a different notation. Each entry of the alternate represen-
tation is the decimal equivalent of the bit-wise addition modulo 2 of the two entries of the
encoding. For example, the entry that connects 1011 and 1100 is 01112 ≡ 710.

For N = 8, the alternate representation for the two encodings can be seen in Table D.1.
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Basis Gray Binary
|0〉 ↔ |1〉 1 1
|1〉 ↔ |2〉 2 3
|2〉 ↔ |3〉 1 1
|3〉 ↔ |4〉 3 7
|4〉 ↔ |5〉 1 1
|5〉 ↔ |6〉 2 3
|6〉 ↔ |7〉 1 1

Table D.1: Alternate representations for the Gray and binary code on three qubits.

Lemma D.4. The alternate representation for Gn and Bn is the same as Gn and Bn, re-
spectively.

Proof. The binary reflective Gray code on n bits is given by

Gn = (Gn−1 · 0,Gn−1, ·1), (D.22)

where Gn is the Gray code on n bits with the entries in reverse order. Reversing
the entire code, we find that

Gn = (Gn−1 · 1,Gn−1, ·0). (D.23)

Thus, the reversed code has the same structure as the existing code with the first
half entries ending with 1, and the second half ending with 0. The entries of alter-
nate representation indicate which bits are flipped and therefore, is unaffected if
0 ↔ 1. Thus, the alternate representation for the reversed Gray code is the same
as the original.

For the binary code Bn, the reversed binary code is the same as the original
with all zeros and ones flipped. Again, the entries of alternate representation
indicate which bits are flipped and therefore, is unaffected if 0 ↔ 1. Thus, the
alternate representation for the reversed binary code is the same as the original.

Definition D.5 [Subsequences]. An entry in the alternate representation of an encoding
represents the flipped qubits between the two corresponding entries of the encoding. We
now define a subsequence of the alternate representation as an ordered subset that connects
the two corresponding entries of the encoding. For example, in the Gray encoding, if 3
connects 010 and 011, and 1 connects 011 and 111, then 3, 1 connects 010 and 111. In
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this work, we represent subsequences using an underscore. For example, in the Gray
encoding, the following subsequence

(1, 2, 1, 3, 1, 2, 1) (D.24)

connects the basis states 110 and 101.

Lemma D.5. There exists an equivalence between subsequences of the alternate represen-
tation of an n-qubit encoding and Pauli strings of the form {I, X}⊗n \ I⊗n.

Proof. In the alternate representation of the Gray code, each entry i indicates
that the operator connecting the corresponding basis state has Pauli X acting on
qubit i. For example, in an n = 3 qubit Gray code, an entry 2 indicates that the two
basis elements differ on the second qubit; i.e., the operator connecting them is IXI.
Subsequences, therefore, encode a string from {I, X}⊗n that connect the endpoints
of the subsequence. For example,

(1, 2, 1, 3, 1, 2, 1) (D.25)

corresponds to X1X3X1X2 = IXX.

Similarly, for the binary code, we act with a bit-wise addition modulo 2 be-
tween the binary representation of every element in the subsequence. The result-
ing binary string is then translated into a Pauli string of {I, X} – each 1 is mapped
to X, and each 0 is mapped to I. For example,

(1, 3, 1, 7, 1, 3, 1) (D.26)

corresponds to 100 and ultimately, XII.

Lemma D.6. The alternate representation for the Gray and binary code on n qubits can
be expressed in the form

S n = (S n−1, Pn, S n−1), (D.27)

where Pi stands for i and 2i − 1 in the Gray and binary codes, respectively, and we re-
fer to each Pi as a pivot. The term pivot refers to the fact that about Pn, the alternate
representation S n is symmetric.

Proof. Consider the form of the binary reflective Gray code on n qubits

Gn = (Gn−1 · 0,Gn−1 · 1), (D.28)
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where Gn is the Gray code on n qubits with the entries in reverse order. Thus the
alternate representation for the code is given by

S n = (S n−1, n, S̃ n−1), (D.29)

where S̃ n is the alternate representation of the reversed code Gn. Using
Lemma D.4, the alternate representation is

S n = (S n−1, n, S n−1). (D.30)

The binary code on n bits is given by

Bn = (0 · Bn−1, 1 · Bn−1). (D.31)

The last entry of Bn−1 is 1n−1, and the first entry of Bn−1 is 0n−1. In the first and
second half of the overall code, the first bit is never flipped, and between the
halves all bits are flipped. Since the decimal representation of 1n is 2n − 1, the
alternate representation is then given by

S n = (S n−1, 2n − 1, S n−1), (D.32)

concluding the proof.

In the next two lemmas, we prove that we only need to consider subsequences
that end at a power of two index. We show that those subsequences are optimal,
and for all other subsequences, there exists a shorter (or equal length) subsequence
ending at a power of two index that maps to the same Pauli string of {I, X} as
defined in Lemma D.5.

Lemma D.7. Consider any subsequence of the alternate representation S n on n qubits.
Let H be the largest entry of the subsequence. Using Lemma D.5, we know that the
subsequence corresponds to a Pauli string consisting of X and I.

Then the corresponding Pauli string can be formed by another subsequence that ends
at the first instance of H (which is guaranteed to occur at an index that is a power of two)
and has a length less than or equal to the original length.

Let us consider a few examples before we go into the proof. For the Gray code,

(1, 2, 1, 3, 1, 2, 1) ≡ (1, 2, 1, 3, 1, 2, 1),

(1, 2, 1, 3, 1, 2, 1) ≡ (1, 2, 1, 3, 1, 2, 1),

(1, 2, 1, 3, 1, 2, 1) ≡ (1, 2, 1, 3, 1, 2, 1). (D.33)
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Similarly, for the binary code

(1, 3, 1, 7, 1, 3, 1) ≡ (1, 3, 1, 7, 1, 3, 1),

(1, 3, 1, 7, 1, 3, 1) ≡ (1, 3, 1, 7, 1, 3, 1),

(1, 3, 1, 7, 1, 3, 1) ≡ (1, 3, 1, 7, 1, 3, 1). (D.34)

Proof of Lemma D.7. We prove the result using an inductive approach on n,
where n is the number of qubits. We have two base cases, n = 1 and n = 2. For
n = 1, S 1 = {1}. There exists only one possible subsequence and it ends at a power
of two. For n = 2, S 2 = {1, 2, 1} or {1, 3, 1} for the Gray and binary code, respectively.
There are six possible subsequences:

(1, 2, 1) ≡ (1, 2, 1), (1, 3, 1) ≡ (1, 3, 1),
(1, 2, 1) ≡ (1, 2, 1), (1, 3, 1) ≡ (1, 3, 1),

(1, 2, 1) ≡ (1, 2, 1), (1, 3, 1) ≡ (1, 3, 1),

(1, 2, 1) ≡ (1, 2, 1), (1, 3, 1) ≡ (1, 3, 1),
(1, 2, 1) ≡ (1, 2, 1), (1, 3, 1) ≡ (1, 3, 1),

(1, 2, 1) ≡ (1, 2, 1), (1, 3, 1) ≡ (1, 3, 1), (D.35)

where the columns represent a Gray code and binary code, respectively. We see
that there always exists a subsequence with length less than or equal to the origi-
nal length, ending at a power of two index.

Next, we state the induction hypothesis: Lemma D.7 holds for some posi-
tive integer n. The induction step is to now show that it holds for n + 1. From
Lemma D.6, we see that

S n = (S n−1, Pn, S n−1), (D.36)
S n+1 = (S n, Pn+1, S n)

= (S n−1, Pn, S n−1, Pn+1, S n−1, Pn, S n−1), (D.37)

where Pi stands for i and 2i − 1 in the Gray and binary codes, respectively, and we
refer to each Pi as a pivot. The pivots Pn, Pn+1, and Pn occur at indices 2n−1, 2n, and
3 · 2n−1, respectively. Consider an arbitrary subsequence

a B (a[L], . . . , a[R]) (D.38)

with endpoint indices L and R, where L ≤ R. Let len B R − L + 1 be the length
of this subsequence. Based on the values of L and R, we split the problem into
multiple cases.
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(a) Case 3: We construct a new subsequence
with the green section, Pn, and the blue sec-
tion. Using the induction hypothesis, a new
subsequence ending at Pn can be found.
Lastly, we replace Pn with Pn+1 again.

(b) Case 4: The red section of the subse-
quence can be canceled out. We construct
a new subsequence with the green section,
Pn+1, and the blue section, which reduces to
Case 3.

(c) Case 5: We preserve the orange section of the subsequence and construct
a new subsequence with the green section, Pn, and the blue section. Using
the induction hypothesis, a new subsequence ending at Pn can be found. The
yellow section can now be appended to the orange section.

Figure D.1: Proof of Lemma D.7 can be broken down into multiple cases. We label
sections of the subsequence with different colors. Pi stands for i and 2i − 1 in the
Gray and binary codes respectively.
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Note that in the following cases, we use the different brackets to indicate if the
endpoint of the interval is included – square brackets indicate that the endpoint is
included and regular parentheses indicate that the endpoint is not included. For
example, (5, 11] is the set {6, 7, 8, 9, 10, 11}.

• Case 1: L,R ∈ [0, 2n). Since both L and R are in the left half of the sequence,
the subsequence must exist in S n = (S n−1, Pn, S n−1). Using the induction hy-
pothesis, there exists an alternate subsequence that lies in S n ending at a
power of two index. The same subsequence thus exists in the left half of
S n+1.

• Case 2: L,R ∈ (2n, 2n+1). Since both L and R are in the right half of the se-
quence, the subsequence must exist in S n = (S n−1, Pn, S n−1). Thus, this case
is similarly covered by the induction hypothesis; i.e., there exists an alter-
nate subsequence that lies in S n ending at a power of two index. The same
subsequence thus exists in the left half of S n+1.

• Case 3: L ∈ (2n−1, 2n), R ∈ (2n, 3 · 2n−1). A pictorial representation of the proof
can be found in Fig. D.1a. Intuitively, this subsequence, with Pn+1 replaced
with Pn, must already exist in the left half of the overall sequence. To for-
malize this notion, we now construct a new subsequence

(a[L], . . . , a[2n − 1], Pn, a[2n + 1], . . . , a[R]).

In essence, we have replaced Pn+1 with Pn in the original subsequence. This
subsequence is now guaranteed to exist in S n = (S n−1, Pn, S n−1). By the induc-
tive hypothesis, there exists a subsequence (a[k], . . . , a[2n−1 − 1], Pn) of length
≤ len, where k ∈ [0, 2n−1). By symmetry, the following subsequence

(a[k + 2n−1], . . . , a[2n − 1], Pn+1),

where we have replaced Pn with Pn+1 again, must exist, has length ≤ len, and
ends at n + 1.

• Case 4: L ∈ [0, 2n−1], R ∈ [3 · 2n−1, 2n+1). A pictorial representation of the
proof can be found in Fig. D.1b. Intuitively, this subsequence contains
(Pn, S n−1, Pn+1, S n−1, Pn) as a part of it. This part can be effectively reduced
to just Pn+1 since every other entry occurs an even number of times. Thus,
we create a new subsequence

(a[L], . . . , a[2n−1 − 1], Pn+1, a[3 · 2n−1 + 1], . . . , a[R]).
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By symmetry, this subsequence is the same as

(a[L + 2n−1], . . . , a[2n − 1], Pn+1, a[2n + 1], . . . , a[R − 2n−1]),

where we have shifted the indices of the left and right half by 2n−1 up and
down respectively. This then reduces to Case 3, handled earlier.

• Case 5: L ∈ [0, 2n−1], R ∈ [2n, 3 · 2n−1). A pictorial representation of the
proof can be found in Fig. D.1c. In this case, we preserve the subsequence
(Pn, S n−1, Pn+1) and create a new subsequence of the form

(a[L], . . . , a[2n−1 − 1], Pn, a[2n−1 + 1], . . . , a[R − 2n−1]).

This subsequence is guaranteed to exist in S n = (S n−1, Pn, S n−1). By the induc-
tive hypothesis, there exists a subsequence (a[k], . . . , a[2n−1 − 1], Pn). We now
reconstruct the original subsequence as follows

(a[k], . . . , a[2n−1 − 1], Pn, S n−1, Pn+1).

The length of this subsequence is ≤ len and it ends at a power of two.

• Case 6: L ∈ (2n−1, 2n], R ∈ [3 · 2n−1, 2n+1]. By symmetry, this subsequence can
be reflected about the midpoint n + 1. This then reduces to Case 5, handled
earlier.

Thus, in all possible cases, we have shown that the inductive step holds if we
assume the inductive hypothesis to be true.

Lemma D.8. Given a subsequence that ends at an index which is a power of two, there
does not exist another subsequence of a shorter length that leads to the same Pauli string.

Proof. Given a subsequence ending at index 2m, the corresponding Pauli string
must have X acting on qubit m + 1. We now provide a proof by contradiction. We
first assume that a shorter subsequence exists. The two possible cases are:

• Case 1: The shorter subsequence ends before index 2m. More concretely, the
shorter subsequence exists within [0, 2m) and using Lemma D.7, there exists
an equivalent subsequence that ends at index 2m−1. No possible subsequence
in this region can have its corresponding Pauli string with X acting on qubit
m + 1.
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• Case 2: A shorter subsequence ends at index 2m. This subsequence has X
acting on qubit m+1. There are 2m subsequences of the form (k, . . . , 2m) for k ∈
{1, . . . , 2m}. These subsequences map to all possible Pauli strings of length m.
Thus, two different subsequences ending at 2m cannot lead to the same Pauli
string.

Thus, we see that there cannot exist any other subsequence of a shorter length that
leads to the same Pauli string.

We note that in the present study, the Hamiltonian for K = 0 (diagonal poten-
tial) is tridiagonal because of the kinetic energy term. As a result, the entries for
K = 1 in the following lemmas and remarks are used for K = 0.

Lemma D.9. Let i, j be two n-bit binary strings, and let N = 2n. Then, the following
statement is true

P(n,K) :
2n−1∑
i=0

(−1)i· jiK = 0 ⇐⇒ | j| > K, (D.39)

for all 0 ≤ K ≤ N and n > 0.

Proof. We prove the statement using induction. More concretely, we use simple
induction on n and strong induction on K. Thus, we assume P(n−1,K), P(n−1,K−
1), . . . , P(n − 1, 0) to be true, and use them to prove P(n,K). We first show the sets
of base cases P(1,K) and P(n, 0).

Base Case 1 : P(1,K). The left hand side now becomes

(−1)0· j0K + (−1)1· j1K

= 0K + (−1) j = 0 ⇐⇒ K = 0, j = 1, . (D.40)

where we use the fact that 00 = 1. Thus, | j| > K.

Base Case 2 : P(n, 0). The left hand side now becomes

2n−1∑
i=0

(−1)i· ji0 = 0, (D.41)

which is true ∀ j , 0. Thus, | j| > 0.
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To prove the equivalence P(n,K), we start from the right hand side | j| > K, and
show that it is equivalent to the left hand side. Let the binary expansion of j be
given by j1 j2 . . . jn.

Case 1: j1 = 0. Thus, | j2 . . . jn| > K. Using the inductive hypotheses and the fact
that | j2 . . . jn| > K satisfies the right hand side of all the hypotheses, we have the
following equalities:

2n−1−1∑
i=0

(−1)i·( j2... jn)iK = 0 Using P(n − 1,K) (D.42)

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−1 = 0 Using P(n − 1,K − 1) (D.43)
...

2n−1−1∑
i=0

(−1)i·( j2... jn)i0 = 0 Using P(n − 1, 0). (D.44)

In each of the statements above, i is an (n − 1)-bit binary string. Now consider the
following equation: (

K
0

)
(2n)0

2n−1−1∑
i=0

(−1)i·( j2... jn)iK


+

(
K
1

)
2n

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−1


+

(
K
2

)
(2n)2

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−2


+ · · · +

(
K
K

)
(2n)K

2n−1−1∑
i=0

(−1)i·( j2... jn)i0


= 0. (D.45)

The equality is because each term within square brackets is zero (using (D.42)-
(D.44)). Thus, using the binomial theorem,2n−1−1∑

i=0

(−1)i·( j2... jn)(2n + i)K

 = 0. (D.46)
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Combining with the first step of the inductive tree (D.42),2n−1−1∑
i=0

(−1)i·( j2... jn)(i)K

 +

2n−1−1∑
i=0

(−1)i·( j2... jn)(2n + i)K

 = 0. (D.47)

In the above two summations, i is an n − 1 bit binary string. We now create an
n bit binary string i′ by appending either 0 or 1 to the front of i and append j1 to
the front of j2 . . . jn. Since j1 = 0, this extra bit has no effect. Thus, the equation
becomes 2n−1−1∑

i=0

(−1)0i·( j1 j2... jn)(i)K

 +

2n−1−1∑
i=0

(−1)1i·( j1 j2... jn)(2n + i)K

 = 0. (D.48)

Now, we notice that 1i is the binary expansion of 2n + i. Thus, the summation can
be written as 2n−1−1∑

i=0

(−1)0i·( j1 j2... jn)(i)K

 +

 2n−1∑
i′=2n−1

(−1)i′·( j1 j2... jn)(i′)K

 = 0. (D.49)

Since i′ is just a dummy index, we replace it with i and combine it with the first
term, finally leading to

2n−1∑
i=0

(−1)i· jiK = 0. (D.50)

Case 2: j1 = 1. Thus, | j2 . . . jn| > K − 1. Using the inductive hypotheses and
the fact that | j2 . . . jn| > K − 1 satisfies the right hand side of all the hypotheses, we
have the following equalities:

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−1 = 0 Using P(n − 1,K − 1) (D.51)

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−2 = 0 Using P(n − 1,K − 2) (D.52)
...

2n−1−1∑
i=0

(−1)i·( j2... jn)i0 = 0 Using P(n − 1, 0). (D.53)
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In each of the statements above, i is an (n − 1)-bit binary string. Now consider the
following equation:

−

(
K
1

)
2n

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−1


−

(
K
2

)
(2n)2

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−2


− · · · −

(
K
K

)
(2n)K

2n−1−1∑
i=0

(−1)i·( j2... jn)i0


= 0. (D.54)

The equality is because each term within square brackets is zero (using (D.51)-
(D.53)). Adding and subtracting the following term,2n−1−1∑

i=0

(−1)i·( j2... jn)iK

 , (D.55)

we get 2n−1−1∑
i=0

(−1)i·( j2... jn)iK


−


(
K
0

)
(2n)0

2n−1−1∑
i=0

(−1)i·( j2... jn)iK


+

(
K
1

)
2n

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−1


+

(
K
2

)
(2n)2

2n−1−1∑
i=0

(−1)i·( j2... jn)iK−2


+ · · · +

(
K
K

)
(2n)K

2n−1−1∑
i=0

(−1)i·( j2... jn)i0


 = 0. (D.56)

Combining the terms within the curly brackets using the binomial theorem, we
get 2n−1−1∑

i=0

(−1)i·( j2... jn)iK

 −
2n−1−1∑

i=0

(−1)i·( j2... jn)(2n + i)K

 = 0. (D.57)
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In the above two summations, i is an n − 1 bit binary string. We now create an n
bit binary string i′ by appending either 0 or 1 to the front of i and append j1 to the
front of j2 . . . jn. Since j1 = 1, this extra bit accounts for the negative sign. Thus,
the equation becomes2n−1−1∑

i=0

(−1)0i·( j1 j2... jn)(i)K

 +

2n−1−1∑
i=0

(−1)1i·( j1 j2... jn)(2n + i)K

 = 0. (D.58)

Now, we notice that 1i is the binary expansion of 2n + i. Thus, the summation can
be written as 2n−1−1∑

i=0

(−1)0i·( j1 j2... jn)(i)K

 +

 2n−1∑
i′=2n−1

(−1)i′·( j1 j2... jn)(i′)K

 . (D.59)

Since i′ is just a dummy index, we replace it with i and combine it with the first
term, finally leading to

2n−1∑
i=0

(−1)i· jiK = 0. (D.60)

Thus, for both cases j1 = 0, 1, we showed that P(n,K) follows from the inductive
hypotheses, concluding the proof.

Lemma D.10. Consider an N × N matrix H with diagonal entries of the form

Hi,i =

K∑
k=0

akik, (D.61)

for some set {ak}
K
k=0 of real constants and for all i ∈ {0, . . . ,N − 1}. Considering only the

diagonal part of the matrix, and using the binary encoding, we get the following equality:

Hdiag =

N−1∑
i=0

K∑
k=0

akik|i〉〈i|

=

N−1∑
i=0

K∑
k=0

akikOi

=
1
2n

N−1∑
j=0

K∑
k=0

ak

N−1∑
i=0

(−1)i· jik

 Õ j, (D.62)
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where the third equality follows from Lemma D.1. Then, the number of Pauli terms ac-
counted for by the diagonal part of the matrix is given by

d(n,K) B
K∑

m=0

(
n
m

)
, (D.63)

where n = log2(N).

Proof. In (D.62), using Lemma D.9, the term in square brackets is non-zero if and
only if | j| ≤ K and all terms with | j| > K get cancelled. Thus, the surviving terms
have | j| ≤ K and the number of such terms is given by

K∑
m=0

(
n
m

)
, (D.64)

which is the number of ways to pick j such that | j| ≤ K.

Remark D.2. Lemma D.10 shows that the number of Pauli terms for the diagonal part
of the Hamiltonian, using the binary encoding, is given by d(n,K). Instead, if we use the
Gray encoding, the diagonal part of the Hamiltonian is given by

Hdiag =

N−1∑
i=0

K∑
k=0

akik|i〉〈i|

=

N−1∑
i=0

K∑
k=0

akikOi

=
1
2n

N−1∑
j=0

K∑
k=0

ak

N−1∑
i=0

(−1)e(i)· jik

 Õ j. (D.65)

Replacing i with e(i) in the exponent changes the relative signs of each term. Thus, the set
of surviving j is different for the binary and Gray encodings. However, since we consider
a sum of all possible j, the size of the set of surviving terms is the same and is equal to
d(n,K).

Lemma D.11. The number of Pauli terms in the Hamiltonian HN,K for the Gray and
binary code is given by (N = 2n),

|H(N,K)| =


d(n, 1) + n2n−1 K = 0

d(n,K) + 2n−1
K∑

k=1
nk 1 ≤ K ≤ 2n−1

2n−1(1 + 2n) K > 2n−1,

(D.66)
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where nk B n − dlog2(k)e.

Proof. From Lemmas D.7 and D.8, we see that we are interested in subsequences
ending at powers of two only. For any subsequence not ending at a power of two,
Lemma D.7 states that there exists an equivalent subsequence ending at a power
of two of shorter (or equal) length. Furthermore, Lemma D.8 states that for any
subsequence ending at a power of two, no shorter subsequence gives the same
Pauli string. Lastly, the set of subsequences ending at a power of two covers all
Pauli strings. Thus, the set of subsequences ending at a power of two forms a
complete and optimal set.

To prove the current lemma, we establish a correspondence between subse-
quences and Pauli strings of the Hamiltonian. As seen in Remark D.5, for every
subsequence, we can associate a Pauli string composed of {I, X}. The Pauli string
corresponds to the flipped bits in the two encoded basis states at the end of the
subsequence. For example, consider an n = 3 Gray code as seen in Table D.1. The
subsequence

(1, 2, 1, 3, 1, 2, 1) ≡ IXX, (D.67)

indicates that |0〉 → |000〉 and |4〉 → |011〉 differ on qubits 2 and 3, as the equivalent
Pauli string has X acting on qubits 2 and 3. Next, we saw in Definition D.3 that
the set of flipped qubits specifies a particular set of operators, each composed of
the same Pauli strings but differing only in their coefficients. Thus, the set can
be specified by the set of Pauli strings that its operators are composed of. For
example IXX corresponds to the set

D(3, 2, {2, 3}) = {
(
I1 ⊗ X2,3

)
Pa

1 ⊗ Pb,b̄
2,3 : ∀a,∀b}. (D.68)

Each operator in this example is made up of the following set of Pauli strings:{
(I ⊗ XX)

( I ± Z
2
⊗

II ± ZZ
2

)}
. (D.69)

Thus, there exists a one-to-one mapping between subsequences ending at a
power of two and Pauli strings of the form {I, X}⊗n \ I⊗n. We also showed that there
exists a one-to-one mapping between Pauli strings of the form {I, X}⊗n \ I⊗n and
sets of distance operators with fixed flipped qubits, completing the connection to
subsequences. Since we are only interested in subsequences ending at a power of
two, we need to find the number of such subsequences.

Next, we provide an important connection that allows us to quantify the num-
ber of Pauli terms for a particular N and K. The truncation parameter K in HN,K
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specifies the maximum length of subsequences allowed; thus, to quantify the
number of Pauli terms, we consider all subsequences of length k ∈ {1, . . . ,K}.

We first provide an example. In the case of K = 3 for a three-qubit Gray code,
we need to consider subsequences of length k ∈ {1, 2, 3}. Furthermore, we need
to only consider subsequences ending at a power of two index. Thus, the subse-
quences we need to consider are

(1, 2, 1, 3, 1, 2, 1) ≡ XII, (D.70)
(1, 2, 1, 3, 1, 2, 1) ≡ IXI, (D.71)
(1, 2, 1, 3, 1, 2, 1) ≡ IIX, (D.72)
(1, 2, 1, 3, 1, 2, 1) ≡ XXI, (D.73)

(1, 2, 1, 3, 1, 2, 1) ≡ XIX, (D.74)

(1, 2, 1, 3, 1, 2, 1) ≡ XXX, (D.75)

where the first three entries account for k = 1, the next two account for k = 2, and
the last entry accounts for k = 3.

A subsequence of length k cannot end at index 2m if k > 2m. Since the highest
power of two in an n-qubit Gray code is 2n−1, for k > 2n−1, we expect to see no
new Pauli strings. Thus, for a fixed k such that 1 < k < 2n−1, we need to count all
powers of two greater than k and less than 2n. There are

nk = n − dlog2(k)e (D.76)

subsets, each contributing 2n−1 Pauli terms (see Lemma D.3). For a concrete ex-
ample, the subsets for different k for a Gray code on n = 4 qubits is shown in
Table D.2. The columns represent the index endpoints of the subsequences.

Similarly, the table for a binary code is shown in Table D.3.

Thus, the total number of Pauli terms for 1 ≤ K ≤ 2n−1 is given by

d(n,K) +

K∑
k=1

nk2n−1, (D.77)

where the first term arises when k = 0, i.e., the number operators of the form
{I,Z}⊗n using Lemma D.10.
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k 1 2 4 8
1 XIII IXII IIXI IIIX
2 XXII XIXI XIIX
3 XXXI XXIX
4 IXXI IXIX
5 IXXX
6 XXXX
7 XIXX
8 IIXX

Table D.2: Gray encoding subsequences as a function of k for an n = 4 code. For a
fixed k, we see that there are nk = n − dlog2(k)e entries and for k > 2n−1, there are no
new entries.

k 1 2 4 8
1 IIIX IIXX IXXX XXXX
2 IIXI IXXI XXXI
3 IXIX XXIX
4 IXII XXII
5 XIXX
6 XIXI
7 XIIX
8 XIII

Table D.3: Binary encoding subsequences as a function of k for an n = 4 code. For
a fixed k, we see that there are nk = n − dlog2(k)e entries and for k > 2n−1, there are
no new entries.

Thus, we finally see that

|H(N,K)| =


d(n, 1) + n2n−1 K = 0

d(n,K) + 2n−1
K∑

k=1
nk 1 ≤ K ≤ 2n−1

2n−1(1 + 2n) K > 2n−1,

(D.78)

concluding the proof.
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Lemma D.12. The set of Pauli strings corresponding to D(n, k, f ) consists of 2| f |−1 qubit-
wise commuting sets.

Proof. As a reminder, the set of operators D(n, k, f ) is defined as

D(n, k, f ) B
{(

I f̄ ⊗ X f

)
Pa

f̄ ⊗ Pb,b̄
f : ∀a ∈ {0, 1}| f̄ |, ∀b ∈ {0, 1}| f |

}
, (D.79)

where Pa
f̄

and and Pb,b̄
f are defined in Definition D.1. Since we are interested in

qubit-wise commutativity, we consider the f and f̄ qubits separately. On the un-
flipped qubits f̄ , the action of every element in D(n, k, f ) is Pa for every bitstring
a. Expanding, we know that for all a, Pa is a linear combination of Pauli strings
composed of {I,Z} only. Thus, all of them pairwise-qubit commute.

On the flipped qubits f , the action of every element in D(n, k, f ) is X f ◦ Pb,b̄
f for

every bitstring b. As seen before, Pb,b̄
f is composed of 2| f |−1 Pauli strings. None of

the Pauli strings qubit-wise commute because of the overall composition with the
Pauli X string. Thus, every set D(n, k, f ) consists of 2| f |−1 qubit-wise commuting
Pauli terms.

As an example related to Lemma D.12, consider the set D(4, 2, {3, 4}), alterna-
tively labeled IIXX,

IIXX =
{(

I1,2 ⊗ X3,4
)

Pa
{1,2} ⊗ Pb,b̄

{3,4}

}
. (D.80)

As mentioned earlier, the values of a and b change the coefficient of the different
Pauli strings, but not the set of strings themselves. Thus, we consider a = 00 and
b = 00. For this choice, the operator is given by(

I1,2 ⊗ X3,4
)

((II + IZ + ZI + ZZ) ⊗ (II + ZZ))
= (II + IZ + ZI + ZZ) ⊗ (XX + YY), (D.81)

up to a normalization constant. Thus, we see that the set of Pauli terms in the
linear combination can be split into the following two qubit-wise commuting sets:

{IIXX, IZXX,ZIXX,ZZXX}, (D.82)
{IIYY, IZYY,ZIYY,ZZYY}. (D.83)

Note that different values of a and b will change the relative sign of some Pauli
strings, but preserve the set of Pauli strings.
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Lemma D.13. The number of qubit-wise commuting sets for HN,K for the binary code is
given by

|H(N,K)|C =


2n K = 0

1 +
K∑

k=1
2|b(k̄)|

[
1 − 2−nk

]
1 ≤ K ≤ 2n−1

1
2 (1 + 3n) K > 2n−1,

(D.84)

where |w| is the Hamming weight of the string w, nk B n − dlog2(k)e, and k̄ B 2n − k.

Proof. Consider 1 ≤ K ≤ 2n−1 and consider a column in Table D.3 labeled by 2 j.
For a particular k value, the entry represents a subsequence of length k ending at
index 2 j. From the ordering of the binary code basis elements, we see that the
entry is given by b(2 j+1 − k). Thus, the total number is given by

n−1∑
j=dlog2(k)e

2|b(2 j+1−k)|−1. (D.85)

This can be simplified by noting that moving a column to the left reduces the
weight of the string by one. Thus, we consider the weight of the last string in the
row and move left. For the last column, the entry is given by k̄ B 2n − k. Thus, the
number of QC sets for a given k is given by

nk−1∑
i=0

2|b(k̄)|−i−1 = 2|b(k̄)|
[
1 − 2−nk

]
. (D.86)

Thus, for a given 1 ≤ K ≤ 2n−1, we get

1 +

K∑
k=1

2|b(k̄)|
[
1 − 2−nk

]
(D.87)

qubit-wise commuting sets. The case K = 0 is equal to the value of K = 1 since the
kinetic energy term accounts for two off-diagonal terms anyway.

Lastly, for K > 2n−1, we have considered all subsets, leading to

1 +
1
2

n∑
i=1

2i

(
n
i

)
=

1
2

(1 + 3n) , (D.88)

concluding the proof.

366



Lemma D.14. The number of qubit-wise commuting sets for HN,K for the Gray code is
given by

|H(N,K)|C =


1 + n K = 0

1 +
K∑

k=1
nk2|gk−1 | 1 ≤ K ≤ 2n−1

1
2 (1 + 3n) K > 2n−1,

(D.89)

where |w| is the Hamming weight of the string w, and nk B n − dlog2(k)e.

Proof. Consider 1 ≤ K ≤ 2n−1 and consider a column in Table D.2 labeled by 2 j.
Since the columns represent subsequences ending at index j, we see that strings
in a column have a fixed structure – the strings end with XIn− j−1. The first j bits
are a Gray representation of the row index k−1. For example, for the cell with row
index 3 and column index 22, the entry is of the form

g3−1 ⊗ X ⊗ I = XX ⊗ X ⊗ I. (D.90)

As seen in Lemma D.12, this set contributes 23−1 Pauli terms.

Thus, for a particular k, the number of Pauli terms is

n−1∑
j=dlog2(k)e

2|gk−1XIn− j−1 |−1

=

n−1∑
j=dlog2(k)e

2|gk−1 |

= nk2|gk−1 |, (D.91)

where the first non-zero j for a row k is dlog2(k)e. Thus, for a fixed 1 ≤ K ≤ 2n−1, we
see that

1 +

K∑
k=1

nk2|gk−1 |, (D.92)

where the first term arises from the all-Z measurement for the diagonal terms. The
case K = 0 is equal to the value of K = 1 since the kinetic energy terms accounts
for two off-diagonal terms anyway.

Lastly, for K > 2n−1, we consider all possible subsets D(n, k, f ) for all k ∈
{1, . . . , n}. Thus, the total is given by

1 +

n∑
i=1

2i−1
(
n
i

)
=

1
2

(1 + 3n) . (D.93)
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This concludes the proof.

Lemma D.15. The set of Pauli strings corresponding to D(n, k, f ) all pairwise commute
with each other. Alternatively, the set of Pauli strings corresponding to D(n, k, f ) forms a
distance-grouped commuting set.

Proof. The set of operators in D(n, k, f ) are

D(n, k, f ) B
{(

I f̄ ⊗ X f

)
Pa

f̄ ⊗ Pb,b̄
f : ∀a ∈ {0, 1}| f̄ |, ∀b ∈ {0, 1}| f |

}
. (D.94)

We already saw that when mapped to Pauli strings, all the operators from the set
lead to combinations of the same Pauli strings with different coefficients only. In
other words, independent of the value of a and b, the operators all map to the
same Pauli strings. Since they all map the same set of Pauli strings, without loss
of generality, we consider the fixed operator a = 0| f̄ | and b = 0| f |:(

I f̄ ⊗ X f

)
P0

f̄ ⊗ P0,0̄
f . (D.95)

Now consider, using Lemma D.1, we see that

P0
| f̄ | =

1
2| f̄ |

2| f̄ |−1∑
j=0

Õ j. (D.96)

Next, we see that

P0,0̄
f =

1
2| f |

∑
l

(
(−1)0·l + (−1)1·l

)
Õl

=
1

2| f |
∑

l

(−1)1·lÕl

=
1

2| f |
∑

l:p(l) mod 2=0

Õl. (D.97)

As mentioned earlier, only terms with even parity l survive the summation. Thus
the Pauli strings are of the form

(I ⊗ X)Õ j ⊗ Õl, (D.98)
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where we use the shorthand X for X f and the constraint that l has even parity.
Finally, we see that the Pauli strings all commute since

[(I ⊗ X)Õ j ⊗ Õl, (I ⊗ X)Õm ⊗ Õn]
= (I ⊗ X)[Õ j ⊗ Õl, (I ⊗ X)Õm ⊗ Õn] + [(I ⊗ X), (I ⊗ X)Õm ⊗ Õn]Õ j ⊗ Õl

= [Õ j ⊗ Õl, Õm ⊗ Õn] + (I ⊗ X)[Õ j ⊗ Õl, (I ⊗ X)]Õm ⊗ Õn

+ (I ⊗ X)[(I ⊗ X), Õm ⊗ Õn]Õ j ⊗ Õl + [(I ⊗ X), (I ⊗ X)](Õm ⊗ Õn)(Õ j ⊗ Õl)
= (I ⊗ X)[Õ j ⊗ Õl, (I ⊗ X)]Õm ⊗ Õn + (I ⊗ X)[(I ⊗ X), Õm ⊗ Õn]Õ j ⊗ Õl, (D.99)

where the first term is zero since all Õ are composed of I,Z only. Next, consider
that

[Õ j ⊗ Õl, (I ⊗ X)] = Õ j ⊗ [Õl, X]
= 0, (D.100)

where the last equality is because the parity of l is even. Similarly, the other term
is also zero since the parity of n is even. Thus, the overall commutator is zero.
Thus, the set of Pauli strings corresponding to the set D(n, k, f ) all commute. Since
the operators in the set are linear combinations of these Pauli strings, they also
commute.

Lemma D.16. The unitary transformation that rotates the computational basis to the
common eigenbasis for set of Pauli strings corresponding to D(n, k, f ) is given by

I f̄ ⊗ UGHZ
f , (D.101)

where UGHZ
f is the unitary operator

UGHZ
f B

2∏
i=| f |

CNOT f1→ fi H f1 . (D.102)

The number of two-qubit gates in the diagonalizing unitary for D(k, n, f ) is thus given by
(| f | − 1).

Proof. To show the above result, we show that the output basis when the unitary
acts on the computational basis is the common eigenbasis of the Pauli operators
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D(n, k, f ). Consider the action on a computational basis state of the form |i〉 f̄ ⊗ | j〉 f .

I f̄ ⊗ UGHZ
f (|i〉 f̄ ⊗ | j〉 f )

= I f̄ ⊗ UGHZ
f (|i〉 f̄ ⊗ | j1 · · · jk〉 f )

= |i〉 f̄ ⊗

 2∏
t=| f |

CNOT1→t H1 | j1 · · · jk〉 f


= |i〉 f̄ ⊗ 1
√

2

2∏
t=| f |

CNOT1→t(|0〉 j1 + (−1) j1 |1〉 j1) | j2 · · · jk〉


= |i〉 f̄ ⊗

(
1
√

2
(|0 j2 · · · jk〉 f + (−1) j1

∣∣∣1 j̄2 · · · j̄k

〉
f
)
)
. (D.103)

Next, we show that these basis elements are eigenstates of the Pauli operators
D(n, k, f ). From Lemma D.15, we know that the Pauli strings associated with
D(n, k, f ) are given by{

(Õl) f̄ ⊗ X f (Õm) f : ∀l ∈ {0, . . . , 2| f̄ | − 1}, ∀m ∈ {0, . . . , 2| f | − 1}, p(m) mod 2 = 0
}
,

(D.104)
where p(m) is the parity of the bitstring m.

We first consider the action of the above Pauli strings on the individual sub-
spaces f and f̄ . On the unflipped subspace f̄ , the action is given by

(Õl) f̄ |i〉 f̄ = (−1)l·i |i〉 f̄ . (D.105)

Thus, |i〉 is an eigenstate. Next, we consider the flipped subspace.

X f (Õm) f

(
1
√

2
(|0 j2 · · · jk〉 f + (−1) j1

∣∣∣1 j̄2 · · · j̄k

〉
f
)
)

= X f

(
1
√

2
((−1)m·0 j2··· jk |0 j2 · · · jk〉 f + (−1) j1(−1)m·1 j̄2··· j̄k

∣∣∣1 j̄2 · · · j̄k

〉
f
)
)
.

=
1
√

2

(
(−1)m·0 j2··· jk

∣∣∣1 j̄2 · · · j̄k

〉
f
+ (−1) j1(−1)m·1 j̄2··· j̄k |0 j2 · · · jk〉 f

)
=

1
√

2
(−1) j1+m·1 j̄2··· j̄k

(
|0 j2 · · · jk〉 f + (−1) j1+m·0 j2··· jk+m·1 j̄2··· j̄k

∣∣∣1 j̄2 · · · j̄k

〉
f

)
. (D.106)
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Consider the following equality:

(−1)m·0 j2··· jk+m·1 j̄2··· j̄k = (−1)m1+···+mk

= (−1)
∑

i mi

= 1, (D.107)

where the last equality is because the parity of m is even. Thus, the action on the
flipped qubits is given by

X f (Õm) f

(
1
√

2
(|0 j2 · · · jk〉 f + (−1) j1

∣∣∣1 j̄2 · · · j̄k

〉
f
)
)

=
1
√

2
(−1) j1+m·1 j̄2··· j̄k

(
|0 j2 · · · jk〉 f + (−1) j1

∣∣∣1 j̄2 · · · j̄k

〉
f

)
. (D.108)

Thus, using Eqs. (D.105) and (D.108), the action of any of the Pauli strings on the
rotated basis states Eq. (D.103) is given by[

(Õl) f̄ ⊗ X f (Õm) f

]
I f̄ ⊗ UGHZ

f (|i〉 f̄ ⊗ | j〉 f )

=
[
(−1)l·i+ j1+m·1 j̄2··· j̄k

]
I f̄ ⊗ UGHZ

f (|i〉 f̄ ⊗ | j〉 f ). (D.109)

Thus, we see that the unitary transformation that rotates the computational basis
to the common eigenbasis for the set of Pauli strings corresponding to D(n, k, f ) is
given by

I f̄ ⊗ UGHZ
f , (D.110)

concluding the proof.

Lemma D.17. The number of distance-grouped commuting sets for HN,K for the binary
and the Gray code is given by

|H(N,K)|C =


1 + n K = 0

1 +
K∑

k=1
nk 1 ≤ K ≤ 2n−1

2n K > 2n−1.

(D.111)

Proof. Consider 1 ≤ K ≤ 2n−1 and a column in Table D.3 labeled by 2 j. For a
particular k value, the entry represents a subsequence of length k ending at index
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2 j. From the ordering of the binary code basis elements, we see that the entry is
given by b(2 j+1 − k). Thus, the total number is given by

n−1∑
i=dlog2(k)e

1 = nk. (D.112)

Thus, for a given 1 ≤ K ≤ 2n−1, we get

1 +

K∑
k=1

nk (D.113)

distance-grouped commuting sets. Lastly, for K > 2n−1, we have considered all
subsets, leading to

1 +

n∑
i=1

(
n
i

)
= 2n. (D.114)

We notice that the number of distance-grouped commuting sets depends only
on the number of filled entries in the Table D.3, and not the individual entries.
This is because each entry contributes a single DGC set. Since the Gray code has
the same number of filled entries per row as the binary code, the number of DGC
sets are the same.

Lemma D.18. The number of two-qubit gates in the diagonalizing unitary using the
DGC scheme for the Gray code is given by

|H(N,K)|DU =


0 K = 0
K∑

k=1
|gk−1|nk 1 ≤ K ≤ 2n−1

1 + 2n−1(n − 2) K > 2n−1.

(D.115)

Proof. As seen in Lemma D.16, the number of two-qubit gates for the diagonal-
izing unitary for the set D(n, k, f ) is (| f | − 1). Similar to the proof of Lemma D.14,
consider 1 ≤ K ≤ 2n−1 and consider a column in Table D.2 labeled by 2 j. Since
the columns represent subsequences ending at j, we see that strings in a column
have a fixed structure – the strings end with XIn− j−1. The first j bits are a Gray
representation of the row index k − 1. For example, the cell with row index 3 and
column index 22, the entry is of the form

g3−1 ⊗ X ⊗ I = XX ⊗ X ⊗ I. (D.116)
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As seen in Lemma D.16, the diagonalizing unitary for this set contains 2 two-qubit
gates.

Thus, for a particular k, the number of two-qubit gates for all the diagonalizing
unitaries are is

n−1∑
j=dlog2(k)e

|gk−1| = nk|gk−1|, (D.117)

where the first non-zero j for a row k is dlog2(k)e. Thus, for a fixed 1 ≤ K ≤ 2n−1, we
see that

K∑
k=1

nk|gk−1|. (D.118)

The case K = 0 is equal to the value of K = 1 since the kinetic energy term accounts
for two off-diagonal terms anyway.

Lastly, for K > 2n−1, we consider all possible subsets D(n, k, f ) for all k ∈
{1, . . . , n}. Thus, the total is given by

n∑
i=1

(i − 1)
(
n
i

)
= 1 + 2n−1(n − 2), (D.119)

concluding the proof.

Lemma D.19. The number of two-qubit gates in the diagonalizing unitary using the
DGC scheme for the binary code is given by

|H(N,K)|DU =


0.5n(n − 1) K = 0

0.5
K∑

k=1
nk

[
2|b(k)| − 1 − nk

]
1 ≤ K ≤ 2n−1

1 + 2n−1(n − 2) K > 2n−1.

(D.120)

Proof. As seen in Lemma D.16, the number of two-qubit gates for the diagonal-
izing unitary for the set D(n, k, f ) is (| f | − 1). Similar to the proof of Lemma D.13,
Consider 1 ≤ K ≤ 2n−1 and consider a column in Table D.3 labeled by 2 j. For a
particular k value, the entry represents a subsequence of length k ending at index
2 j. From the ordering of the binary code basis elements, we see that the entry is
given by b(2 j+1 − k). Thus, the total number is given by

n−1∑
j=dlog2(k)e

|b(2 j+1 − k)| − 1. (D.121)
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This can be simplified by noting that moving a column to the left reduces the
weight of the string by 1. Thus, we consider the weight of the last string in the
row and move left. For the last column, the entry is given by k̄ B 2n − k. Thus, the
number of QC sets for a given k is given by

nk−1∑
i=0

|b(k̄)| − i − 1 = 0.5nk

[
2|b(k)| − 1 − nk

]
, (D.122)

where nk B n − dlog2(k)e. Thus, for a given 1 ≤ K ≤ 2n−1, we get

0.5
K∑

k=1

nk

[
2|b(k)| − 1 − nk

]
(D.123)

two-qubit gates. The case K = 0 is equal to the value of K = 1 since the kinetic
energy term accounts for two off-diagonal terms anyway.

Lastly, for K > 2n−1, we consider all possible subsets D(n, k, f ) for all k ∈
{1, . . . , n}. Thus, the total is given by

n∑
i=1

(i − 1)
(
n
i

)
= 1 + 2n−1(n − 2), (D.124)

concluding the proof.

D.2 List of Operators

In this section, as an example, we give the complete list of number and ladder
operators for all encodings with N = 4.

Table D.4 lists the encoded operators for the one-hot encoding. Table D.5 lists
the encoded operators for the binary encoding. Lastly, Table D.6 lists the encoded
operators for the Gray encoding.

D.3 Simulation Details for n+C

We now provide specific simulation details in Tables D.7, D.8, and D.9 for the
different simulations for the energy of the lowest 1

2
+ state for the n+C systems un-

der consideration. We mainly use the Gray encoding, with truncation parameter
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Fock operator Encoded operator

|0〉〈0| 0.5(I − Z1)

|1〉〈1| 0.5(I − Z2)

|2〉〈2| 0.5(I − Z3)

|3〉〈3| 0.5(I − Z4)

|0〉〈1| + |1〉〈0| 0.5(X1X2 + Y1Y2)

|1〉〈2| + |2〉〈1| 0.5(X2X3 + Y2Y3)

|2〉〈3| + |3〉〈2| 0.5(X3X4 + Y3Y4)

|0〉〈2| + |2〉〈0| 0.5(X1X3 + Y1Y3)

|1〉〈3| + |3〉〈1| 0.5(X2X4 + Y2Y4)

|0〉〈3| + |3〉〈0| 0.5(X1X4 + Y1Y4)

Table D.4: Encoded operators for the one-hot encoding with N = 4. For the ladder
operators, each term has its Hermitian conjugate added as well. This is because
the Hamiltonian is Hermitian, leading to them having the same coefficient.

N = 8 (n = 3) and N = 16 (n = 4), and K = 3. For all Gray encoding simulations,
we use L = 4 layers.

For gradient descent, we use a adaptive learning rate scheme. Every 10 itera-
tions, fit a straight line of the last 10 cost function values. If the slope is negative,
increase learning rate lr to min(1.05lr, lrmax). If the slope is positive, reduce learning
rate lr to max(0.8lr, lrmin).

D.4 Simulation Details for n+α

We now provide specific simulation details for the different simulations in Ta-
bles D.10, D.11, and D.11 for the energy of the lowest 1

2
+ orbit for the n+α optical

potential derived ab initio. For all the simulations, we use the Gray encoding, with
truncation parameter N = 8 (n = 3) and N = 16 (n = 4), and K = 1, 2. For all Gray
encoding simulations, we use L = 5 layers.
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Fock operator Encoded operator

|0〉〈0| 0.25(II + IZ + ZI + ZZ)

|1〉〈1| 0.25(II − IZ + ZI − ZZ)

|2〉〈2| 0.25(II + IZ − ZI − ZZ)

|3〉〈3| 0.25(II − IZ − ZI + ZZ)

|0〉〈1| + |1〉〈0| 0.5(IX + ZX)

|1〉〈2| + |2〉〈1| 0.5(XX + YY)

|2〉〈3| + |3〉〈2| 0.5(IX − ZX)

|0〉〈2| + |2〉〈0| 0.5(XI + XZ)

|1〉〈3| + |3〉〈1| 0.5(XI − XZ)

|0〉〈3| + |3〉〈0| 0.5(XX − YY)

Table D.5: Encoded operators for the binary encoding with N = 4. For the ladder
operators, each term has its Hermitian conjugate added as well. This is because
the Hamiltonian is Hermitian, leading to them having the same coefficient.

For gradient descent, we use an adaptive learning rate scheme. Every 10 itera-
tions, fit a straight line of the last 10 cost function values. If the slope is negative,
increase the learning rate lr to min(1.05lr, lrmax). If the slope is positive, reduce the
learning rate lr to max(0.8lr, lrmin).
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Fock operator Encoded operator

|0〉〈0| 0.25(II + IZ + ZI + ZZ)

|1〉〈1| 0.25(II + IZ − ZI − ZZ)

|2〉〈2| 0.25(II − IZ − ZI + ZZ)

|3〉〈3| 0.25(II − IZ + ZI − ZZ)

|0〉〈1| + |1〉〈0| 0.5(XI + XZ)

|1〉〈2| + |2〉〈1| 0.5(IX − ZX)

|2〉〈3| + |3〉〈2| 0.5(XI − XZ)

|0〉〈2| + |2〉〈0| 0.5(XX − YY)

|1〉〈3| + |3〉〈1| 0.5(XX + YY)

|0〉〈3| + |3〉〈0| 0.5(IX + ZX)

Table D.6: Encoded operators for the Gray encoding with N = 4. For the ladder
operators, each term has its Hermitian conjugate added as well. This is because
the Hamiltonian is Hermitian, leading to them having the same coefficient.

n+10C

N Type Details

8, 16 - Gray

Noiseless

K = 1 for 500 iterations followed by K = 3 for
500 iterations, both using SPSA. Lastly, K = 3 for

1000 iterations using gradient descent and a
varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 103 shots.

Noisy

K = 1 for 500 iterations using 103 shots, followed
by K = 3 for 1500 iterations using 2 × 104 shots,
both using SPSA. Cost function estimated using

a fake IBMQ backend ibm_manila.

Table D.7: Simulation details for n+10C (Part 1). Plots shown in Fig. 5.11.
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n+12C

N Type Details

8 - Gray

Noiseless

K = 1 for 500 iterations followed by K = 3 for
500 iterations, both using SPSA. Lastly, K = 3 for

1000 iterations using gradient descent and a
varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 103 shots.

Noisy

K = 1 for 500 iterations using 103 shots, followed
by K = 3 for 1500 iterations using 2 × 104 shots,
both using SPSA. Cost function estimated using

a fake IBMQ backend ibm_manila.

16 - Gray

Noiseless

K = 1 for 500 iterations followed by K = 3 for
1000 iterations, both using SPSA. Lastly, K = 3

for 1500 iterations using gradient descent and a
varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 103 shots.

Noisy

K = 1 for 500 iterations using 103 shots, followed
by K = 3 for 1500 iterations using 2 × 104 shots,
both using SPSA. Cost function estimated using

a fake IBMQ backend ibm_manila.

Table D.8: Simulation details for n+12C (Part 2). Plots shown in Fig. 5.12.
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n+14C

N Type Details

8 - Gray

Noiseless

K = 1 for 500 iterations followed by K = 3 for
500 iterations, both using SPSA. Lastly, K = 3 for

1000 iterations using gradient descent and a
varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 103 shots.

Noisy

K = 1 for 500 iterations using 103 shots, followed
by K = 3 for 1500 iterations using 2 × 104 shots,
both using SPSA. Cost function estimated using

a fake IBMQ backend ibm_manila.

16 - Gray

Noiseless

K = 1 for 500 iterations followed by K = 3 for
1000 iterations, both using SPSA. Lastly, K = 3

for 1500 iterations using gradient descent and a
varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 103 shots.

Noisy

K = 1 for 500 iterations using 103 shots, followed
by K = 3 for 2500 iterations using 2 × 104 shots,
both using SPSA. Cost function estimated using

a fake IBMQ backend ibm_manila.

8 - OH

Noiseless
K = 1 for 500 iterations followed by K = 3 for

1500 iterations, both using SPSA.

Shot Noise
Same as noiseless but using a shot based

estimator for 103 shots.

Noisy

K = 1 for 500 iterations followed by K = 3 for
1500 iterations, both using SPSA. Cost function

estimated using a fake IBMQ backend
ibm_manila.

Table D.9: Simulation details for n+14C (Part 3). Plots shown in Fig. 5.13 for n+14C
Gray, and Fig. 5.14 for n+14C OH.
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~ω = 12, N = 8

K Type Details

1

Noiseless
K = 0 for 500 iterations using SPSA, followed by
K = 1 for 500 iterations using gradient descent

and a varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 105 shots.

Noisy

K = 0 for 500 iterations using 103 shots, followed
by K = 1 for 500 iterations using 105 shots, both

using SPSA. Cost function estimated using a fake
IBMQ backend ibm_manila.

2

Noiseless

K = 0 for 500 iterations, K = 1 for 500 iterations,
followed by K = 2 for 500 iterations, all using

SPSA, followed by K = 2 for 500 iterations using
gradient descent and a varying learning rate

scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 105 shots.

Noisy

K = 0 for 500 iterations using 103 shots, K = 1 for
500 iterations using 103 shots, followed by K = 2
for 500 iterations using 105 shots, all using SPSA.

Cost function estimated using a fake IBMQ
backend ibm_manila.

Table D.10: Simulation details for n+α. Plots shown in Fig. 5.15.
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~ω = 12, N = 16

K Type Details

1

Noiseless

K = 0 for 500 iterations, K = 1 for 1000 iterations,
both using SPSA, followed by K = 1 for 1000

iterations using gradient descent and a varying
learning rate scheme.

Shot Noise

K = 0 for 500 iterations, K = 1 for 500 iterations,
both using SPSA, following by K = 1 for 1500

iterations using gradient descent and a varying
learning rate scheme. All estimations use 105

shots.

Noisy

K = 0 for 1000 iterations using 103 shots, followed
by K = 1 for 1500 iterations using 105 shots, both
using SPSA. Cost function estimated using a fake

IBMQ backend ibm_manila.

2

Noiseless

K = 0 for 500 iterations, K = 1 for 500 iterations,
K = 2 for 1000 iterations, all using SPSA, followed

by K = 2 for 1000 iterations using gradient
descent and a varying learning rate scheme.

Shot Noise

K = 0 for 500 iterations, K = 1 for 500 iterations,
K = 2 for 500 iterations, all using SPSA, following

by K = 2 for 1500 iterations using gradient
descent and a varying learning rate scheme. All

estimations use 105 shots.

Noisy

K = 0 for 500 iterations using 103 shots, K = 1 for
500 iterations using 103 shots, K = 2 for 500

iterations using 103 shots, followed by K = 2 for
500 iterations using 105 shots, all using SPSA.
Cost function estimated using a fake IBMQ

backend ibm_manila.

Table D.11: Simulation details for n+α. Plots shown in Fig. 5.16.
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~ω = 16, N = 8

K Type Details

1

Noiseless
K = 0 for 500 iterations using SPSA, followed by
K = 1 for 500 iterations using gradient descent

and a varying learning rate scheme.

Shot Noise
Same as noiseless but using a shot based

estimator for 105 shots.

Noisy

K = 0 for 500 iterations using 103 shots, followed
by K = 1 for 500 iterations using 105 shots, both

using SPSA. Cost function estimated using a fake
IBMQ backend ibm_manila.

2

Noiseless
K = 0 for 750 iterations, K = 1 for 750 iterations,
followed by K = 2 for 750 iterations, all using

SPSA.

Shot Noise
Same as noiseless but using a shot based

estimator for 105 shots.

Noisy

Same as noiseless, but using a fake IBMQ
backend ibm_manila with 103, 103, and 105

shots for K = 0, 1, 2, respectively, to estimate
expectation values. Cost function estimated
using a fake IBMQ backend ibm_manila.

Table D.12: Simulation details for n+α. Plots shown in Fig. 5.17.
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