
Open Quantum Systems and
Quantum Error Correction

Thesis

Submitted in partial fulfillment of the requirements of
BITS F422 Thesis

Soorya Rethinasamy
f2015350@pilani.bits-pilani.ac.in

Under the supervision of

Abhishek Mishra

Assistant Professor, Birla Institute of Technology and Science, Pilani

Birla Institute Of Technology And Science Pilani, Pilani Campus

June 2020



Acknowledgements

The author would like to thank Dr. Abhishek Mishra for his granting me the opportunity
to work under him on this thesis. Despite the problem statement being out of this field
of expertise, he was always willing to provide much needed guidance and support. He
allowed a great deal of freedom to explore the terrain of the field. Furthermore, the
author is grateful to the Computer Science Department, BITS Pilani and Birla Institute
of Technology and Science, Pilani for this opportunity.

The quantum circuit diagrams in this manuscript are created using the quantikz
package [Kay18].



Certificate

This is to certify that the thesis entitled, Open Quantum Systems and Quantum Er-
ror Correction, and submitted by Soorya Rethinasamy, ID No. 2015B5A70350P
in partial fulfillment of the requirement of BITS F422T Thesis, embodies the work done
by him under my supervision.

Date : Abhishek Mishra
Assistant Professor Professor

Birla Institute of Technology and Science, Pilani



Abstract

In this review, we look at several salient features of open quantum systems. We introduce
various noise models, on multi-qubit and single-qubit systems. We look at several impor-
tant examples of noisy channels. Classical error-correction is introduced as a precuror to
quantum error-correction.

We then look at the three qubit bit flip channel and phase-flip channel. We explore
the intricacies of the Shor code, capable of correcting arbitrary errors on a single qubit. In
the next section, we begin the development of a theoretical framework for quantum error-
correction. We look at the development of a class of quantum codes called CSS codes,
firmly based on classical linear codes. Finally, we delve into the stabilizer formalism and
create codes using this formalism.
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Chapter 1

Introduction

Quantum computers work with qubits, unlike traditional classical computers that work
with bits. It has been shown, both theoretically and practically, that, through precise
control of quantum phenomena, quantum computers can outperform classical computers.
Several notable examples include search algorithms, integer prime factorization, opti-
mization, and quantum simulation.

Classical computers are built using transistors, that act as logical ON/OFF switches,
and classical logic gates. Compared to the size of the qubit implementation, these tran-
sistors are a million times larger and are very easy to control. This control allows an
almost complete removal of errors at the physical level. For quantum computers how-
ever, the qubit systems are much more error-prone and thus require a more active error
correction. This requirement translates to a more involved algorithm design process, and
the need for more sophisticated hardware. The field of quantum error correction evolved
as an answer to the question, What quantum operations can we reliably perform using
unreliable underlying hardware?

This thesis is divided into two important chapters. The first chapter will dive into
open quantum systems, and how they can be modeled. The second chapter will talk
about quantum error correction, several examples and a more robust theoretical base
model.
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Chapter 2

Open Quantum Systems

A introduction to the postulates of Quantum mechanics can be found in several texts and
articles. However, the approach here is based on the approach of the excellent textbook
by Nielsen and Chuang [NC11].

Postulate 3 of Quantum Mechanics tells us that a closed quantum system undergoes a
unitary evolution. Closed systems have no interaction with the external world. However,
no real system, besides the universe, is truly closed. Thus, any real system must interact
with the environment and these interactions show up as noise. For example, if the state
of a qubit is represented by two positions of a electron, then that electron will interact
with other charged particles, which act as a source of uncontrolled noise affecting the
state of the qubit. An open system is nothing more than one which has interactions with
some other environment system, whose dynamics we wish to neglect, or average over.

We begin this chapter with the description of the quantum operations formalism. This
formalism helps us exactly describe this quantum noise. Then, we shall look at the Kraus
Operator Sum Representation. Lastly, we look at the open evolution of a qubit.

2.1 The System and the Environment

Consider a combined system made of 2 systems - a system of interest, called A, and the
environment E. We assume that the combined system is closed and undergoes a unitary
evolution, obeying Schrödinger equation [Lid19].

We pick two orthonormal bases for the two Hilbert spaces as

HA = span (|i〉A)

HE = span (|µ〉E) . (2.1)

By the second postulate, the Hilbert space of the two system combined is the tensor
product of the individual spaces:

H = HA ⊗HE

= span (|i〉A ⊗ |µ〉E) . (2.2)

Thus, any state |ψ〉 ∈ H can be expressed as a linear combination of the new basis
vectors. Consider a pure state ensemble {|ψa〉 , pa}. Each state of the ensemble can be
expressed as follows:

|ψa〉 =
∑
i,µ

ca;i,µ |i〉A ⊗ |µ〉E . (2.3)

2



CHAPTER 2. OPEN QUANTUM SYSTEMS

Thus, the associated density matrix for this ensemble can be expressed as

ρ =
∑
a

pa|ψa〉〈ψa|

=
∑
a

pa(
∑
i,µ

ca;i,µ |i〉A ⊗ |µ〉E)(
∑
j,ν

c∗a;j,ν 〈j|A ⊗ 〈ν|E)

=
∑
ijµν

λijµν |i〉〈j|A ⊗ |µ〉〈ν|E, (2.4)

where λijµν =
∑
a

paca;i,µc
∗
a;j,ν .

Since we are only interested in system A, we need to discard the environment E. We
now define a new operation called partial trace, which effectively averages out of the
components of B from the combined density matrix. The resultant density matrix then
describes only A.

2.1.1 Partial Trace

The partial trace is a linear operator mapping operators from the total Hilbert space to
the Hilbert space of A, i.e., H 7→ HA.

Consider an operator O = XA ⊗ YE. The partial trace with respect to system E is then
defined as,

TrE(XA ⊗ YE) ≡ XA Tr(YE)

= XA

∑
µ

〈µ|YE |µ〉

=
∑
µ

〈µ|XA ⊗ YE |µ〉 . (2.5)

Using linearity, if O =
∑

ij cijX
i
A ⊗ Y

j
E, then by linearity:

TrE[O] =
∑
ij

cij TrE(X i
A ⊗ Y

j
E)

=
∑
ij

cijX
i
A

∑
µ

〈µ|Y j
E |µ〉

=
∑
µ

∑
ij

cij 〈µ|X i
A ⊗ Y

j
E |µ〉

=
∑
µ

〈µ|O |µ〉 . (2.6)

When applied to the definiton of ρ from (2.4):

TrE[|i〉〈j|A ⊗ |µ〉〈ν|E] ≡ |i〉〈j|A〈µ|ν〉E. (2.7)

3



CHAPTER 2. OPEN QUANTUM SYSTEMS

By linearity,

TrE[
∑
ijµν

λijµν |i〉〈j|A ⊗ |µ〉〈ν|E] =
∑
ijµν

λijµν |i〉〈j|A〈ν|µ〉E

=
∑
ijµ

λijµµ|i〉〈j|A

=
∑
ij

λ̄ij|i〉〈j|A, (2.8)

where λ̄ij =
∑

µ λijµµ. We note that the output looks like a state purely on subsys-
tem A. It can be shown that the output satisfies all the required for a density matrix.
Furthermore, it can be shown that the partial trace is the only operation that produces
a reduced density matrix that obeys the measurement postulate for each subsystem.
Here, without proof (proof can be found in [NC11]), the state of the subsystem A can be
given as:

ρA = TrE[ρ]. (2.9)

2.2 Open System Dynamics

2.2.1 Kraus Operator Sum Representation

Consider a system S and environment E that are initially in a state ρ(0). Since the
combined system is closed, they undergo a unitary evolution U(t) = e−iHt. Then, by
Schrödinger’s equation,

ρ(t) = U(t)ρ(0)U †(t). (2.10)

The reduced density matrix for the environment can be expanded using an orthonormal
basis as follows (Using the Spectral Decomposition Theorem [NC11]):

ρE(0) =
∑
ν

λν |ν〉〈ν|, (2.11)

where λν are the eigenvalues (probabilities) and {|ν〉} are the corresponding orthonor-
mal eigenvectors.

The state of the system is then found by performing a partial trace over the environ-
ment, i.e.,

ρS(t) = TrE[ρ(t)]. (2.12)

Since the trace is basis-independent, we pick the orthonormal eigenvectors of the
environment, i.e.,

ρS(t) = TrE[U(t)ρ(0)U †(t)]

=
∑
µ

〈µ|U(t)ρ(0)U †(t) |µ〉 . (2.13)

4



CHAPTER 2. OPEN QUANTUM SYSTEMS

Here, we make a crucial assumption. Let the initial state be uncorrelated, i.e., exist
as a product of density matrices.

ρ(0) = ρS(0)⊗ ρE(0). (2.14)

Thus, using the definition of ρE(0),

ρS(t) =
∑
µ

〈µ| [U(t)ρS(0)⊗
∑
ν

λν |ν〉〈ν|U †(t)] |µ〉

=
∑
µν

√
λν 〈µ|U(t) |ν〉E ρS(0)

√
λν 〈ν|U †(t) |µ〉E

=
∑
µν

Kµν(t)ρS(0)K†µν(t), (2.15)

where we have defined the system-only operators {Kµν}, called the Kraus operators
and are given by

Kµν(t) =
√
λν 〈µ|U(t) |ν〉 . (2.16)

Note that the partial matrix element leaves an operator acting on the system alone.
The equation defining the evolution of the system in terms of Kraus operator is called
the Kraus Operator Sum Representation (OSR)

ρS(t) =
∑
µν

Kµν(t)ρS(0)K†µν(t). (2.17)

We now look at several important properties that any Kraus OSR must satisfy.

2.2.2 Normalization

The system state should be normalized at all times, so we demand

Tr[ρS(t)] = 1

= Tr[
∑

Kµν(t)ρS(0)K†µν(t)]

=
∑

Tr[Kµν(t)ρS(0)K†µν(t)]

=
∑

Tr[K†µν(t)Kµν(t)ρS(0)]

= Tr[
∑

K†µν(t)Kµν(t)ρS(0)]. (2.18)

It is easy to check that the equation is satisfied if
∑
K†µν(t)Kµν(t) = I. However,

this condition is not necessary. Thus the system state is guaranteed to be normalized
provided the Kraus operators satisfy the following identity,∑

µν

K†µν(t)Kµν(t) = I. (2.19)

This criterion can be verified for our definition of Kraus operators, given by Eq. (2.16).
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CHAPTER 2. OPEN QUANTUM SYSTEMS

∑
µν

K†µνKµν =
∑
µν

λν 〈µ|U(t) |ν〉 〈ν|U †(t) |µ〉

=
∑
ν

λν 〈ν|U †(t)

(∑
µ

|µ〉〈µ|

)
U(t) |ν〉

=
∑
ν

λν〈ν|ν〉

=
∑

λν = 1. (2.20)

Thus, such a set of Kraus operators preserves normalization.

Note that when there is just a single Kraus operator, the normalization condition (2.19)
forces it to be unitary, which is the case of a closed system.

2.2.3 The Schrödinger equation as a special case

Assume that U = US ⊗ UE. In this special case the Kraus operators become

Kµν = US
√
λν 〈µ|UE |ν〉 ≡ cµνUS. (2.21)

It’s easy to see that the sum rule normalization condition implies∑
µν

c∗µνcµν = 1. (2.22)

Thus,

ρS(t) =
∑
µν

cµνUS(t)ρS(0)c∗µνU
†
S(t)

= US(t)ρS(0)U †S(t), (2.23)

which is unitary, Schrödinger-like dynamics. Thus the Kraus operator formalism is a
generalization of Schrödinger dynamics.

2.2.4 Quantum Maps

The Kraus OSR can be interpreted as a map (or synonymously a process or channel) Φ
from the initial to the final system state, i.e.,

ρ(t) = Φ[ρ(0)] ↔ Φ : ρ(0) 7→ ρ(t) , (2.24)

where Φ[X] ≡
∑

αKαXK
†
α. Note that Φ is called a superoperator, as it acts on

operators. There are some key properties that any such map must possess.

1. Trace Preserving:

Tr[Φ(ρ)] =
∑
α

Tr(KαρK
†
α)

=
∑
α

Tr(K†αKαρ)

= Tr(
∑
α

K†αKαρ)

= Tr(ρ), (2.25)

6



CHAPTER 2. OPEN QUANTUM SYSTEMS

where we substitute
∑

αK
†
αKα = I. Thus the map Φ is trace-preserving.

2. Linear: By direct substitution we find:

Φ(aρ1 + bρ2) =
∑
α

Tr(Kαaρ1K
†
α) +

∑
α

Tr(Kαbρ2K
†
α)

= a
∑
α

Tr(Kαρ1K
†
α) + b

∑
α

Tr(Kαρ2K
†
α)

= aΦ(ρ1) + bΦ(ρ2) (2.26)

for any scalars a and b. Thus the map Φ is linear.

3a. Positivity:

This property means that Φ maps positive operators to positive operators. Assume
the operator A > 0, i.e., it has only non-negative eigenvalues, not all zero. Note
that any density matrix ρ must be positive, and we can write A =

∑
i λi|i〉〈i| where

all λi ≥ 0 using the Spectral Decomposition Theorem.

In order to demonstrate that Φ(A) > 0 it is sufficient show that 〈ν|Φ(A) |ν〉 ≥ 0
for all |ν〉 ∈ HS, since this means in particular that the eigenvalues of Φ(A) are all
non-negative. Let |wa〉 = K†α |ν〉. Then:

〈ν|Φ(A) |ν〉 =
∑
α

〈ν|KαAK
†
α |ν〉

=
∑
α

〈wa|A |wa〉

=
∑
ai

λi|〈wa|i〉|2 . (2.27)

Since each term in the sum is positive, Φ(A) > 0, and Φ itself is a positive map.

The Kraus OSR satisfies these three properties, but does every map that satisfy the
same properties have a Kraus OSR? It turns out that we must modify and strengthen
the positivity property into “complete positivity”.

Complete Positivity

The map Φ is a completely positive (CP) map if it maps positive operators to positive

operators (is “positivity preserving”), and moreover, Φ⊗ I(k)E is positive for all k, where
k is the dimension of an ancillary Hilbert space HE.

3b. Complete Positivity

If (Φ⊗ I(k)E )(A) > 0 ∀k, then Φ is called a completely positive (CP) map.

It turns out that conditions 1, 2, 3b are necessary and sufficient for the Kraus OSR.
That is:

Theorem 1. A quantum map Φ has a Kraus operator sum representation [i.e., Φ(X) =∑
αKαXK

†
α with

∑
αK

†
αKα = I] iff it is trace preserving, linear, and completely positive.

[NC11]

Note that there exist positive, but not completely positive maps. Several other prop-
erties and equivalences have been found.

7



CHAPTER 2. OPEN QUANTUM SYSTEMS

2.3 Quantum Maps on a qubit

In this section, by focusing on the case of one qubit, we will develop a geometric picture
of the action of quantum maps. The main tool that will allow us to do this is the Bloch
sphere representation.
A density matrix of a qubit may be written as (Ch:2 [NC11])

ρ =
1

2
(I + ~v · ~σ) (2.28)

where ~σ = (σx, σy, σz) is a triplet of the Pauli matrices and ~v = (vx, vy, vz) ∈ R3 is the
Bloch vector. Thus any single qubit density matrix can be thought of as a point in or on
the Bloch Sphere. States with ‖~v‖ = 1 lie on the surface of the sphere and correspond
to pure states of the form ρ = |ψ〉〈ψ|. Points on the interior of the sphere correspond to
mixed states with purity P = Tr[ρ2] < 1.

2.3.1 Transformation of the Bloch Vector

What happens when a quantum map acts on a single qubit? When the density matrix
gets mapped using Φ : ρ 7→ ρ′, both must be expressible as a Bloch vector. Thus,
ρ′ = 1

2
(I + ~v′ · ~σ). We shall show (without proof) that ρ 7→ ρ′ is equivalent to mapping

the Bloch vector
~v 7→ ~v′ = M~v + ~c (2.29)

for some real 3× 3 matrix M and a vector ~c ∈ R3 (Refer [Lid19] for the proof).
Expanding (2.29), we can show that the components of M and c are as follows:

Mij =
1

2

∑
α

Tr (σiKασjK
†
α)

ci =
1

2

∑
α

Tr (σiKαK
†
α) (2.30)

We can decompose M in a way that will reveal more of the geometric aspects of the
transformation. Recall the polar decomposition, which allows us to write any square
matrix A as A = U |A|, where U is a unitary matrix and |A| ≡

√
A†A is Hermitian (since

clearly its eigenvalues are real), a generalization of the polar representation of a complex
number z = eiθ|z|. If A is a real matrix, U becomes real-unitary, i.e., orthogonal, and |A|
becomes real-Hermitian, i.e., symmetric. So, for our 3 × 3 real matrix M we can write
M = OS, for orthogonal O and symmetric S =

√
M †M . S causes deformation by scaling

along the directions of the eigenvectors by a factor of the corresponding eigenvalues. O is
a rotation matrix. Now we may interpret the action of a quantum map on a qubit state
as mapping the Bloch vector according to

~v 7→ ~v′ = OS~v + ~c, (2.31)

as a shift by ~c, a deformation by S and a rotation by O. Because the Bloch sphere repre-
sents the set of possible Bloch vectors, we may view the Kraus map acting on a qubit as
a transformation of the Bloch sphere that displaces its center by ~c and turns the sphere
into an angled ellipsoid.

We now look at a representative example, the phase damping channel.

8
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2.3.2 Phase Damping Channel

The phase damping channel, upon acting on a qubit, outputs the same qubit with prob-
ability p and applies the Z operation with probability 1− p. More succinctly,

ρ′ = pρ+ (1− p)ZρZ, (2.32)

where Z = σz. Thus, using (2.24), we can express the Kraus operators as K0 =
√
pI and

K1 =
√

1− pZ. Using (2.30), we see that

ci =
1

2

∑
α

Tr(σiKαK
†
α)

=
1

2
[pTr(σi) + (1− p) Tr(σi)]

= 0. (2.33)

Similarly,

Mij =
1

2

∑
α

Tr(σiKασjK
†
α)

=
1

2
[pTr(σiσj) + (1− p) Tr(σiZσjZ)]

= pδij +
1

2
(1− p)Jij , (2.34)

where Jij ≡ Tr(σiZσjZ). Written explicitly the matrix J is:

J =

 Tr(XZXZ) Tr(XZY Z) Tr(XZZZ)
Tr(Y ZXZ) Tr(Y ZY Z) Tr(Y ZZZ)
Tr(ZZXZ) Tr(ZZY Z) Tr(ZZZZ)


=

 Tr(−I) Tr(σ) Tr(σ)
Tr(σ) Tr(−I) Tr(σ)
Tr(σ) Tr(σ) Tr(I)


= diag(−2,−2, 2). (2.35)

Thus,

M =

2p− 1 0 0
0 2p− 1 0
0 0 1

 (2.36)

and
~v′ = M~v = [(2p− 1)vx, (2p− 1)vy, vz]

t . (2.37)

The corresponding transformation of the Bloch sphere is shown in Fig. 2.1. There is
no shift of the Bloch sphere, while there is a rescaling along the vx and vy directions by
a factor of (2p− 1), and all points on the vz axis are fixed. The map has two fixed pure
states, the north and south poles of the Bloch sphere, |0〉〈0| and |1〉〈1|. For p = 1, the
Bloch sphere remains unchanged.

9
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Figure 2.1: The Bloch sphere become an ellipsoid after transformation by the phase
damping channel. The invariant states are those on the σz axis. The major axis has
length 2, the minor axis has length 2(2p− 1). Figure taken from [Lid19]

The purity of the transformed state is

P ′ = Tr[(ρ′)2]

=
1

2
(1 + ‖~v′‖2)

=
1

2
[1 + (2p− 1)2(v2x + v2y) + v2z ]

≤ P . (2.38)

Thus the purity always decreases under the phase damping channel, except for the states
on the vz axis (with vx = vy = 0), whose purity is invariant.

The Bit Flip Channel has the same properties as the Phase Damping Channel with all
Z replaced with X. Thus, states on the on the vx axis (with vy = vz = 0), are invariant.

10



Chapter 3

Quantum Error Correction

The field of quantum error correction evolved as an answer to the question, What quantum
operations can we reliably perform using unreliable underlying hardware? We begin with
understanding the basics of classical error correction, and the challenges that need to
be tackled in quantum error correction. Then, we pick a specific procedure to perform
quantum error correction. The next section develops a theoretical framework for all
quantum error-correcting codes. Next, we talk about constructing quantum CSS codes
from classical linear codes. Finally, we talk about the stabilizer formulation and the
associated quantum codes. The development of the chapter follows the work by Neilsen
and Chuang [NC11].

3.1 Classical Error Correction

Over the years, classical systems have become incredibly reliable - an error rate of 1 in
1017 operations. However, before the advent of reliable hardware, a systems methodology
was required to protect against noise.

Let us take the example of a noisy classical communication channel. The channel flips
the input bit with probability p > 0 and doesn’t with probability 1 − p. This channel
is called the binary symmetric channel. The basic idea is to encode the input by adding
redundancy. For example, one way to protect against noise is to replicate every bit thrice
i.e.,

0 −→ 000

1 −→ 111. (3.1)

The strings 000 and 111 are referred to as the logical 0 and logical 1 and this type of
code is called the repetition code. Suppose the output of the channel is 001. Provided p
is low enough, it is highly likely that the input was 0. This is called majority decoding,
as we check the majority of the bits in the output.

We notice that majority decoding fails is two or more bits have been flipped. Thus,
denoting pe as the probability of error,

pe(repetition code) = 3p2(1− p) + p3

pe(without code) = p. (3.2)

11
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Thus, the transmission is more reliable when 3p2(1− p) + p3 < p or p < 0.5.

There are several salient differences between classical and quantum information which
makes “adding redundancy” not as straightforward. The three major differences are:

• No Cloning: The No Cloning theorem of quantum mechanics prevent arbitrary
states |ψ〉 from being cloned. So, a simple redundancy addition is impossible.

• Continuous Errors: The errors that can affect a quantum state are not discrete, like
the classical case. Discerning the type of error would require infinite precision.

• Measurement: In quantum mechanics, measurement of a state collapses the super-
position to a basis state, and thus, information is lost.

3.2 Three qubit bit-flip code

These errors, while formidable, are surmountable. To see the effects in action, we take the
quantum analogue of the binary symmetric channel. The channel leaves qubits untouched
with probability 1 − p and with probability p, the state |ψ〉 is taken to X |ψ〉. Suppose
the state a |0〉+ b |1〉 is encoded as a |000〉+ b |111〉. In other words, the encoding scheme
we use is:

|0〉 −→ |0L〉 ≡ |000〉
|1〉 −→ |1L〉 ≡ |111〉 . (3.3)

The quantum circuit that performs this encoding is:

|ψ〉

|0〉

|0〉

Figure 3.1: Encoding circuit for the three qubit bit flip code

Each of these qubits are now sent through the bit flip channel and we assume that a bit
flip occurred on only one or fewer qubits. The error-correction strategy is made of two
parts:

• Error-detection or Syndrome Diagnosis: We perform a special measurement
that which indicates where the error occurred. However, the measurement operators
for this measurement are chosen such that they reveal no information about the

12
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initial state. There are four error syndromes, corresponding to four projection
operators:

P0 ≡ |000〉〈000|+ |111〉〈111| no error

P1 ≡ |100〉〈100|+ |011〉〈011| bit flip on qubit 1

P2 ≡ |010〉〈010|+ |101〉〈101| bit flip on qubit 2

P3 ≡ |001〉〈001|+ |110〉〈110| bit flip on qubit 3. (3.4)

Notice that these projectors are orthogonal. Suppose a bit flip occurred on qubit
one. Thus, the corrupted state is a |100〉 + b |011〉. We see that, in this case,
〈ψ|P1 |ψ〉 = 1 and the outcome is definitely 1. Furthermore, the state after the
measurement is undisturbed! As mentioned earlier, the measurement only tells us
about which error occurred and nothing about a or b.

• Recovery: There are four possible measurement outcomes and each has it’s own
recovery procedure: 0 - do nothing; 1 - flip 1st qubit; 2 - flip second qubit; 3 - flip
3rd qubit.

Note that the error analysis is similar the classical case and we conclude that the proce-
dure increases the reliability if p < 0.5.

Another equivalent way of performing the syndrome can be generalized easily. Instead of
the four projectors, assume we measure the two observables Z1Z2 (Z ⊗Z ⊗ I) and Z2Z3.
Each of these have eigenvalues ±1 and thus contain one bit of information each. Z1Z2

can be thought of as comparing the first and second qubit. Similarly for Z2Z3. With
both bits, we can conclude which qubit had the error.

3.3 Three qubit phase-flip code

The bit-flip code was very analogous to the classical bit flip channel. However, there are
other errors only applicable in the quantum regime - eg. phase errors. The phase-flip
channel leaves qubits untouched with probability 1− p and with probability p, the state
|ψ〉 is taken to Z |ψ〉, i.e., a |0〉+ b |1〉 is taken to a |0〉 − b |1〉.

While this channel seems to be a totally different channel, with no classical equivalent,
the phase-flip and bit-flip are actually similar. Suppose we work in a new basis |+〉 ≡
(|0〉 + |1〉)/

√
2 and |−〉 ≡ (|0〉 − |1〉)/

√
2. We notice that in this new basis, Z |+〉 = |−〉

and vice versa. In other words, Z flips the labels, acting like a bit-flip error in this basis!
Thus, the encoding is done as follows:

|0〉 −→ |0L〉 ≡ |+ + +〉
|1〉 −→ |1L〉 ≡ |− − −〉 . (3.5)

The quantum circuit that performs this encoding is:

13
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|ψ〉 H

|0〉 H

|0〉 H

Figure 3.2: Encoding circuit for the three qubit phase flip code

The other steps remain the same, showing that the protocols are equivalent. Instead
of measuring Z1Z2 and Z2Z3, we measure X1X2 and X2X3. These observables compare
the phase of the qubits, and thus, can be used to find out which qubit has an error.

We say that these channels are unitarily equivalent, since there is an unitary operator
U , such that the action of one channel is the same as the other is preceeded by U and
succeeded by U †.

3.4 The Shor Code

So far, we have seen how to error-correct against bit-flip and phase-flip errors. But, as
we have seen earlier, the errors on quantum states are continuous. However, there is a
simple quantum code that can protect against the effects of arbitrary errors! The code,
called the Shor code, is a combination of the bit-flip and the phase-flip codes.

We concatenate the two encoding procedures, i.e., we first encode using the phase-flip
encoding and then encode each of them using the bit-flip encoding. In other words, first
we encode |0〉 −→ |+ + +〉 and |1〉 −→ |− −−〉. Then, |+〉 −→ (|000〉 + |111〉)/

√
2 and

|−〉 −→ (|000〉−|111〉)/
√

2 (which is the encoding output is we encode |+〉 and |−〉 using
the bit-flip procedure). The result is a nine-qubit code with logical qubits:

|0〉 −→ |0L〉 ≡
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2

|1〉 −→ |1L〉 ≡
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
. (3.6)

The quantum circuit that performs this encoding is:
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|ψ〉 H

|0〉

|0〉

|0〉 H

|0〉

|0〉

|0〉 H

|0〉

|0〉

Figure 3.3: Encoding circuit for the Shor nine qubit code

We now show that the Shor code can protect against phase flip and bit flips errors on
a single qubit. Assume that a bit flip occurred on qubit 5. Thus, Z1Z2 = 1, Z2Z3 = 1,
Z4Z5 = −1, Z5Z6 = −1, Z7Z8 = 1, Z8Z9 = 1, proving that the bit flip occurred on qubit
5. Thus, we can apply X on the fifth qubit and restore the original state. We see that,
using the similar procedure as the three qubit bit-flip code, we can fix any single bit-flip
error.

Suppose that a single phase flip occurred in qubit 3. This changes the phase of the first
set of qubits from |000〉 + |111〉 to |000〉 − |111〉. Furthermore, if the phase error had
occurred in any of the first three qubits, we would have the same effect. Here instead of
checking the phase value of individual qubits, we check the phase value of the blocks of
qubits. More concretely, we check whether the first and second block of qubits have the
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same sign. Then, we check if the second and third block of qubits have the same sign. The
syndrome measurement corresponding to this is X1X2X3X4X5X6 and X4X5X6X7X8X9.
In our case, the first measurement gives us −1 and the second measurement gives 1.
Thus, we can deduce that the error occurred in one of the first three qubits. This can be
accomplished by performing Z1Z2Z3. Thus, we can fix any single phase-flip error.

Notice that if both bit and phase flip errors occurred on any qubit, the procedure will
first detect the bit flip, correct it, and then detect the phase error and correct it. Thus,
Shor code also enables the correction of the combined error ZX.

What is incredible is that, despite only correcting a discrete set of errors, the Shor
code can already correct the entire continuum of quantum errors! These errors can be
tiny - a rotation about the z axis of the Bloch sphere by π/263 radians - or it can be a
complete error, i.e., replace the qubit with garbage. This discretization is at the core of
quantum error correction.

To simplify, we assume that the error occurs only on the first qubit. We describe this
noise by a trace-preserving quantum map E . From Theorem 1, we know that we can
expand this operation using the Kraus elements {Ei}. If the state before the error was
originally α |0L〉+ β |1L〉, then the final state will be

E(|ψ〉〈ψ|) =
∑
i

Ei|ψ〉〈ψ|E†i . (3.7)

Let us focus on just one term, say Ej|ψ〉〈ψ|E†j . Since Ej acts only on qubit 1, it can
be expanded as a linear combination of the identity I, bit flip X1, phase flip Z1 and the
combined bit-phase flip X1Z1:

Ej = ej0I + ej1X1 + ej2Z1 + ej3X1Z1. (3.8)

Thus, in turn, implies that Ej |ψ〉 can be written as a linear combination of |ψ〉, X |ψ〉,
Z |ψ〉, and XZ |ψ〉. Measuring the error syndrome will collapse the state to one of these,
and the appropriate correction can be made. This is a deep fact about quantum error-
correction - by just correcting the bit-flip, phase-flip and combined error, any code can
correct arbitrary errors!

We now construct a more general theory of quantum error correcting codes.

3.5 Theory of Quantum Error Correction

We delve into creating a working set of conditions that allow the existence of quantum
error-correction codes. The framework we develop doesn’t guarantee the existence of
good codes. The next section will talk about the actual construction of codes.

The salient features and terminology required can be explained using the Shor code.
The input states need to be encoded first. The encoding is done using a unitary into
a quantum error-correcting code. A quantum error-correcting code is defined as a
subspace C of a Hilbert space. Here, we introduce the projector onto the code space P .
For example, in the three qubit bit-flip code, the logical codewords were |000〉 and |111〉.
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Thus, P = |000〉〈000|+ |111〉〈111|.

Next, the encoded state is subject to noise. We then perform the syndrome measure-
ment to find which error occurred so that recovery can be attempted. One key require-
ment is that different syndromes correspond to undeformed and orthogonal subspaces.
The subspaces must be orthogonal so that we can distinguish which space the state is
in, and in turn, diagnose the error that brought it to that space. The non-deformity
condition is required because an error should map orthogonal keywords to orthogonal
states. For example, in the bit-flip code, α |000〉 + β |111〉, upon any single error, gets
mapped to a different subspace, all orthogonal to each other and within each subspace,
|000〉 and |111〉 get mapped to two orthogonal states.

For developing a broader theory, we make two assumptions. Firstly, the noise is described
by a quantum operation E and the error-correction procedure is described by another
quantum operation R. Thus, we require that for any state ρ that belongs to the code C,

(R ◦ E)ρ = ρ. (3.9)

The quantum error-correction conditions are a set of condition to whether a
quantum error-correcting code protects against a noise E .

Theorem 2 (Quantum error-correction conditions). Let C be a quantum code, and let P
be the projector onto C. Suppose E is a quantum operation with operation elements {Ei}.
A necessary and sufficient condition for the existence of an error-correction operation R
correcting E on C is that

PE†iEjP = αijP, (3.10)

for some Hermitian matrix α of complex numbers.

Proof. We first prove sufficiency by constructing an explicit correction operation R. Sup-
pose {Ei} is a set of operation elements that satisfy conditions (3.10). Since α is a Her-
mitian matrix, it can be diagonalized d = u†αu, where u is a unitary and d is diagonal.
Define operators Fk ≡ uikEi. Since {Fk} are linear combinations of {Ei}, {Fk} is also a
set of operation elements of E . Thus,

PF †kFlP =
∑
ij

u†kiujlPE
†
iEjP

=
∑
ij

u†kiαijujlP, (3.11)

where the 2nd equality is from (3.10). Since d = u†αu, we see that

PF †kFlP = dklP, (3.12)

which is just the diagonal version of the original conditions (3.10). From the polar
decomposition theorem, we see that

FkP = Uk

√
PF †kFkP =

√
dkkUkP, (3.13)
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for some unitary Uk. Thus, the effect of Fk is to rotate the coding subspace into the sub-
space defined by the projector Pk ≡ UkPU

†
k = FkPU

†
k/
√
dkk. Furthermore, the subspaces

are orthogonal, which can be shown since when k 6= l,

PlPk = P †l Pk =
UlPF

†
l FkPu

†
k√

dlldkk
= 0. (3.14)

Thus, the syndrome measurement is defined by the projectors Pk, with an additional
projector if necessary to satisfy the completeness relation. Recovery is accomplished
by simply applying U †k . Thus, the combined detection-recovery step corresponds to the

quantum operation R(σ) =
∑

k U
†
kPkσPkUk.

Thus, for states ρ in the code, we see that

U †kPkFl
√
ρ = U †kP

†
kFlP

√
ρ

=
U †kUkPF

†
kFlP

√
ρ

√
dkk

= δkl
√
dkkP

√
ρ

= δkl
√
dkk
√
ρ. (3.15)

Thus, we finally see that,

R(E(ρ)) =
∑
kl

U †kPkFlρF
†
l PkUk

=
∑
kl

δkldkkρ

= ρ. (3.16)

To prove necessity of the conditions, suppose {Ei} is the set of errors which are correctable
by a operation R with operation elements {Rj}. Define a quantum operation EC(ρ) ≡
E(PρP ). Since PρP is in the code for all ρ, it follows that, for all states ρ,

R(EC(ρ)) ∝ PρP. (3.17)

Furthermore, the proportionality constant must be a constant c, independent of the
state ρ to conserve linearity. Expanding the operations,∑

ij

RjEiPρPE
†
iR
†
j = cPρP. (3.18)

Since this equation holds for all ρ, the quantum operation with operation elements
{RjEiP} is identical to the quantum operation with a single operation element

√
cP .

Thus, we know that there exists complex numbers Cki such that

RkEiP = ckiP. (3.19)

Thus, PE†iR
†
kRkEiP = c ∗ki ckjP . Since R is a trace preserving operation

∑
k R
†
kRk = I.

Thus, summing over k, we see that

PE†iEjP = αijP, (3.20)

where αij ≡
∑

k c ∗ki ckj is a Hermitian matrix of complex numbers. Hence, proved.
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3.5.1 Discretization of errors

In the previous section, we discussed the correction against a specific noise process E .
We now that a specific code C and error-correction procedure R can be used to protect
against an entire class of operations.

Theorem 3. Suppose C is a quantum code and R is the error-correction operation to
recover from the noise-operation E with elements {Ei}. Suppose F is a quantum operation
with elements {Fj}, which are linear combinations of the {Ei}, i.e., Fj =

∑
imjiEi for

some matrix m of complex numbers. Then, R corrects the effects of the noise F .

Proof. From Theorem 2, we see that PEiE
†
jP = αijP . We can perform a similar trans-

formation to the set {Ei} such that αij can be made diagonal dij. The error-correction

operation R has operational elements U †kPk, where Uk and Pk are chosen such that for
any ρ in the code space:

U †kPkEi
√
ρ = δki

√
dkk
√
ρ. (3.21)

Substituting Fj =
∑

imjiEi, we see that

U †kPkFj
√
ρ =

∑
i

mjiδki
√
dkk
√
ρ

= mjk

√
dkk
√
ρ , (3.22)

and thus,

R(F(ρ)) =
∑
kj

U †kPkFjρF
†
j PkUk

=
∑
jk

|mjk|2dkkρ

= ρ. (3.23)

Thus, instead of talking about error processes E correctable by a code C and error-
operation R, we can talk about a set of error operators {Ei} which are correctable (using
equation (3.10)). This is a very powerful result, and as seen before, a code than can
correct X, Z and XZ errors on a single qubit, can correct arbitrary errors on a single
qubit.

3.6 Constructing quantum codes

With the framework laid down, we now begin constructing quantum codes. We first
describe classical correction codes and using them define quantum CSS codes.

3.6.1 Classical Linear Codes

A linear code C encoding k bits of information into n bits is specified by a n by k gen-
erator matrix G whose entries are all elements of Z2, i.e., made of zeros and ones. Thus,
an input message x is encoded as Gx, where x is treated as a column vector. Note that
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all operations are performed modulo 2.

For example, the repetition code maps single bits to three copies of itself and, therefore
must have a 3 by 1 generator matrix,

G =

1
1
1

 (3.24)

since G[0] = (0, 0, 0) and G[1] = (1, 1, 1). A code that encodes k bits into n bits is called a
[n, k] code. We notice that each column of the G matrix is n bits long and the encode mes-
sage is the linear combination of the columns. More concretely, if the G = [g1, g2, . . . , gk]
(where gi is an n by 1 vector) and the message is x = [x1, x2, . . . , xk], then the encoded
message is given by Gx = x1g

1 + x2g
2 + . . . xkg

k. Thus, for all messages to be uniquely
encoded, the only constraint is that the columns of G are linearly independent.

Property 1. Adding one column of G to another results in a generator matrix generates
the same code. The columns are linearly independent and the code is all possible linear
combinations of the columns. Thus, adding a column to another doesn’t change the code.

The greatest advantage of the linear codes is the compact specification. A general
[n, k] code needs n bits for each of the 2k codewords, needing a total of n2k bits. As we
have seen, a linear code needs nk bits.

Another alternate, but equivalent, formulation of linear codes is using the parity matrix.
This formulation makes the error-correction aspect more transparent. An [n, k] code is
the set of all n-bit vectors over Z2 such that

Hx = 0, (3.25)

where H is a n − k by n matrix called the parity check matrix. We similarly note that
the rows of the parity check matrix must be linearly independent.

Property 2. Adding one row of H to another results in a parity check matrix for the
same code.

We now connect the two formulations. To go from the parity check matrix to the
generator matrix, pick k linearly independent vectors y1, . . . , lk that span the kernel of H
(Hyi = 0). Set these as the columns of G. For the reverse direction, pick n − k linearly
independent vectors x1, . . . , xn−k orthogonal to the columns of G and set the rows of H
to be yT1 , . . . , y

T
n−k.

Property 3. For any linear code, HG = 0. Since, for all x, Gx belongs to the code.
Thus, HGx = 0, by the definition of the parity check matrix. Since this equation is true
for all x, HG must be identically zero.

The parity check makes error-correction easy. For an input message x, we encode
it using the generator matrix G such that y = Gx. An error e occurs that makes the
encoded message y′ = y + e. Thus, Hy′ = H(y + e) = He is called the error syn-
drome. In the cases where no errors or just one error occurred, we can compute Hej and
compare it with He. This figures out the error bit j which can be added to y′ to restore y.
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We now introduce the concept of distance. For two n bit words x and y, the Hamming
distance d(x, y) is defined as the number of places that x and y differ. The Ham-
ming weight of a word x is it’s distance from the zero string wt(x) ≡ d(x, 0). Note
that wt(x + y) ≡ d(x, y). Using our previous encoding example, if the probability of a
error is less than 0.5, then the most likely y for a received y′ is the one that minimizes
d(y, y′) = wt(e).

We now define a global property of a code. The distance of a code is the minimum
distance between any two codewords,

d(C) ≡ min
x,y∈C,x6=y

d(x, y). (3.26)

Since d(x, y) = wt(x, y), and for a linear code, x+ y is also a code word,

d(C) = min
x∈C,x6=0

wt(x). (3.27)

Thus, a code is specified by three parameters [n, k, d]. A code with a distance of 2t+1
can correct up to t errors.

We also look at an important construction called the dual construction. Consider a
code [n, k] code C with a generator matrix G and parity check matrix H. We define a
new code, the dual code of C, C⊥ with generator matrix HT and parity check matrix
GT . A code is weakly self-dual if C ⊆ C⊥ and strictly self-dual if C = C⊥.

Property 4. A code with generator matrix G is weakly self-dual iff GTG = 0.

Proof. Consider a weakly self-dual code C with generator matrix G. Thus, C ⊆ C⊥. For
all x, Gx ∈ C and thus Gx ∈ C⊥. Thus, from the definition of the parity check matrix,
GTGx = 0. Since this is true for all x, GTG = 0. For the reverse direction, consider a
code and its dual such that GTG = 0. Thus, for all x, GT (Gx) = 0 and in turn implies
that Gx ∈ C⊥. Thus, C ⊆ C⊥.

Property 5. For a linear code C, if x ∈ C⊥, then
∑

y∈C(−1)x.y = |C| and if x /∈ C⊥,
then

∑
y∈C(−1)x.y = 0.

Proof. Consider an x ∈ C⊥. Thus, x = HT z for some z. Thus,∑
y∈C

(−1)x
T y =

∑
w∈{0,1}k

(−1)z
THGw

=
∑

w∈{0,1}k
(−1)0

= |C|. (3.28)

Similarly, we pick x /∈ C⊥. Thus, GTx 6= 0 or xTG 6= 0.∑
y∈C

(−1)x
T y =

∑
w∈{0,1}k

(−1)x
TGw

=
∑

w∈{0,1}k
(−1)v

Tw, (3.29)
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where v = xTG 6= 0. Let v have n > 0 entries 1. Thus, vTw is the sum of entries of w
whose corresponding v entries are not zero. Define w′ such that w′i = wi when vi is not
zero, and 0 elsewhere. Thus vTw = rank (w′). Thus,∑

w∈{0,1}k
(−1)v

Tw =
∑

w∈{0,1}k
(−1)rank(w

′)

=
∑

w∈{0,1}k,rank(w′) even

1−
∑

w∈{0,1}k,rank(w′) odd

1

= 0. (3.30)

This is because, independent of n, half of the w′ have even rank and other half are
odd.

3.6.2 Calderbank-Shor-Steane Codes

We now look at a large class of quantum codes called CSS codes. Suppose C1 and C2 are
[n, k1] and [n, k2] classical linear codes such that C2 ⊂ C1 and C1 and C⊥2 both correct t
errors. We now define a [n, k1− k2] quantum code, called CSS(C1, C2) which can correct
t errors. This is called the CSS code of C1 over C2.

Before we begin, we define a relation using C1 and C2 called R. We say that (u, v) ∈ R
for u, v ∈ C1 iff there exists a w ∈ C2 such that u = v + w.

Property 6. Relation R, defined above, is a equivalence relation and splits C1 into
equivalence classes or cosets.

Proof. We show that R is reflexive, symmetric and transitive.

• Reflexive. For every u ∈ C1, (u, u) ∈ R iff there exists a w ∈ C2 such that u = u+w
or w = 0. We know that w = 0 ∈ C2 because H20 = 0, where H2 is the parity
check matrix for code C2.

• Symmetric. For every u, v ∈ C1, (u, v) ∈ R iff there exists a w ∈ C2 such that
u = v + w. Adding w, we see that u+ w = v. Thus, (v, u) ∈ R.

• Transitive. For every u, v, w ∈ C1, (u, v), (v, w) ∈ R iff there exists a α, β ∈ C2 such
that u = v + α and v = w + β. Adding the equations, we see that u = w + α + β.
Since α, β ∈ C2 and C2 is a linear code, γ = α + β ∈ C2. Thus, u = w + γ and
thus, (u,w) ∈ R.

Suppose x ∈ C1 is any codeword in C1. We define the quantum state |x+ C2〉 by

|x+ C2〉 ≡
1√
|C2|

∑
y∈C2

|x+ y〉 , (3.31)

where the addition is bitwise addition modulo 2. Suppose x′ is an element of C1 such that
x− x′ ∈ C2. We see that (x, x′) ∈ R. Furthermore, we notice that |x+ C2〉 = |x′ + C2〉.
Thus, every coset requires just one representative as every other member of the coset
results in the same final state. Additionally, for x, x′ belonging to different cosets, there
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are no y, y′ such that x + y = x′ + y′. Thus, |x+ C2〉 is orthogonal to |x′ + C2〉. The
number of cosets are |C1|/|C2| = 2k1−k2 .

To sum up, the subcode C2 and defines 2k1−k2 cosets in C1, where each coset has a rep-
resentative element, and elements from different cosets are orthogonal to each other.

The quantum code CSS(C1, C2) is defined as the vector space spanned by the states
|x+ C2〉 for all x ∈ C1. Let us now see how this code corrects errors.

Let the bit flip errors be described by an n bit vector e1 where 1s where bit flip occurred.
Similarly, let the phase flip errors be described by an n bit vector e2 where 1s where phase
flip occurred. Thus, the initial state |x+ C2〉 now becomes,

1√
|C2|

∑
y∈C2

(−1)(x+y).e2 |x+ y + e1〉 . (3.32)

We now perform an operation, with sufficient ancillary qubits as required initially in
the |0〉, to store the syndrome of the code C1. In other words, we perform the following
operation

|x+ y + e1〉 |0〉 → |x+ y + e1〉 |H1(x+ y + e1)〉 = |x+ y + e1〉 |H1e1〉 , (3.33)

since (x+ y) ∈ C1. This operation can be performed using only CNOT gates as is shown
in the property below. Thus, the effect of this procedure is to create the following state,

1√
|C2|

∑
y∈C2

(−1)(x+y).e2 |x+ y + e1〉 |H1e1〉 . (3.34)

Now, the ancillary qubits are measured and discarded. Using H1e1, we can infer e1 since
C1 can correct upto t errors. Thus, applying NOT gates are the correct positions using
e1, we get the state

1√
|C2|

∑
y∈C2

(−1)(x+y).e2 |x+ y〉 . (3.35)

Now to detect phase flip errors, we use the similar trick as before. Applying Hadamard
gates to all the qubits, we get

1√
|C2|2n

∑
z′

∑
y∈C2

(−1)(x+y).(e2+z
′) |z′〉 , (3.36)

where the sum is over all possible n bit z′. Setting z ≡ z′ + e2,

1√
|C2|2n

∑
z

∑
y∈C2

(−1)(x+y).z |z + e2〉 . (3.37)

Now, using property 5, we see that if z ∈ C⊥2 then
∑

y∈C2
(−1)y.z = |C2| and if z /∈ C⊥2

then
∑

y∈C2
(−1)y.z = 0. Thus the state is,

1√
2n/|C2|

∑
z∈C⊥

2

(−1)x.z |z + e2〉 . (3.38)
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This state looks like a bit error described by e2. So, we introduce the necessary ancilla
qubits, apply the parity check matrix H2 for C⊥2 , measure to get H2e2 and correct the e2
errors. Thus, the state is,

1√
2n/|C2|

∑
z∈C⊥

2

(−1)x.z |z〉 . (3.39)

Now applying Hadamard to each qubit again, noticing that the Hadamard is the inverse
of itself, and we are applying the inverse operation for the special case e2 = 0, we see
that the state is

1√
|C2|

∑
y∈C2

|x+ y〉 , (3.40)

which is the original state. Thus, upto t bit-flip and phase-flip errors have been corrected.

Property 7. Given a parity check matrix H, the transformation |x〉 |0〉 → |x〉 |Hx〉 can
be computed using only CNOT gates.

Proof. |x〉 is an n dimensional vector and |0〉 is an n − k dimensional vector. This is
because Hx will result in an n−k bit vector. Also note that the CNOT gate maps |x〉 |y〉
to |x〉 |x⊕ y〉. Consider an example computation of Hx,

[
a b c
d e f

]xy
z

 =

[
ax⊕ by ⊕ cz
dx⊕ ey ⊕ fz

]
. (3.41)

If a = 0, x doesn’t contribute to the sum, and if a = 1, x is added (modulo 2) to the sum.
Thus, we conclude that the following rule can be used. If the (i, j) entry of the parity
check matrix H Hij, is 1, add a CNOT gate between the ith qubit and jth ancillary qubit.
This set of CNOT operations will result in the ancillary qubits in the state |Hx〉. As an
example, consider,

|x〉 =

xy
z

 , (3.42)

and

H =

[
1 0 1
0 1 1

]
. (3.43)

Then, the circuit made of CNOTs that performs this operation is,
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|x〉
|y〉
|z〉

|0〉

|0〉

Figure 3.4: Circuit to perform Hx for the given H

3.6.3 Steane Code

The Steane Code is an example of a CSS code that is constructed using the [7, 4, 3]
Hamming code, which we call C, whose parity check matrix is

H[C] =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 . (3.44)

Using the procedure given in the previous section, we can deduce that the generator
matrix for C is

G[C] =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


. (3.45)

We now define C1 ≡ C and C2 ≡ C⊥. Thus, G[C1] = G[C], H[C1] = H[C], G[C2] =
H[C1]

T and H[C2] = G[C1]
T . We see that the span of rows of H[C2] strictly contain that

of H[C1], and since the corresponding codes are the kernels of the parity check matrices,
C2 ⊂ C1. Furthermore, C⊥2 = C, and thus both C1 and C2 are distance 3 codes which
can correct errors on a single qubit. Thus, CSS(C1, C2) is [7, 1] quantum code.

We know explicitly calculate the codewords for both codes and show the logical code-
words. The codewords for the codes are calculated as Gx for all x.
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x G[C1]x

0000 0000000
0001 0001111
0010 0010110
0011 0011001
0100 0100101
0101 0101010
0110 0110011
0111 0111100
1000 1000011
1001 1001100
1010 1010101
1011 1011010
1100 1100110
1101 1101001
1110 1110000
1111 1111111

Table 3.1: Codewords for C1

x G[C2]x

000 0000000
001 1010101
010 0110011
011 1100110
100 0001111
101 1011010
110 0111100
111 1101001

Table 3.2: Codewords for C2

To confirm, we explicitly see that C2 ⊂ C1. Thus, the number of cosets is |C1|/|C2| =
2. So we need to pick two elements x, x′ from C1 such there exists no y ∈ C2 such that
x − x′ = y. We pick x = 0000000 and x′ = 1111111. These two elements become the
logical 0L and logical 1L for the encoded qubit. Thus,

|0L + C2〉 =
1√
8

[|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉] (3.46)

|1L + C2〉 =
1√
8

[|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉] (3.47)

Note that, as proven, |0L + C2〉 is orthogonal to |1L + C2〉.
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3.7 Stabilizer Codes

Stabilizer codes, also called additive quantum codes, are another important class of quan-
tum codes. We first delve into the stabilizer formalism of quantum mechanics, and then
come discuss the error-correction aspect.

3.7.1 Stabilizer Formalism

Consider the Bell state

|ψ〉 =
|00〉+ |11〉√

2
(3.48)

We see that X1X2 |ψ〉 = |ψ〉 and Z1Z2 |ψ〉 = |ψ〉. We say this state is stabilized by
the operators X1X2 and Z1Z2. The basic idea of the stabilizer formalism is that we can
describe the system in question by the operators that stabilize them. The key to this
reformulation is group theory. The group in question is the Pauli group Gn on n qubits,
with multiplicative factors. For the single qubit case,

G1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (3.49)

This set of matrices forms a group under the matrix multiplication operation. Gn

over n qubits is made of all n-fold tensor products of these matrices.

Suppose S is a subgroup of Gn and define VS to the set of n qubit states which are fixed
(eigenvalue is one) by every element of S. VS is the vector space stabilized by S, and S is
the stabilizer of the space VS. Thus, VS is the intersection of the subspaces fixed by each
operator in S (eigenvalue one eigenspaces of elements of S).

We now look at an example of the stabilizer formulation for n = 3 and S = {I, Z1Z2, Z2Z3, Z1Z3}.
The subspace fixed by Z1Z2 is spanned by |000〉 , |001〉 , |110〉 and |111〉. The subspace
fixed by Z2Z3 is spanned by |000〉 , |100〉 , |011〉 and |111〉. Thus, the overlapping states
are |000〉 and |111〉. Furthermore, these two states are fixed by Z1Z3 and I as well. Thus,
VS is spanned by these these two states.

We determined VS by looking at the subspace of two operators only. This is another
property from group theory - the description of a group by its generators. A set of
elements g1, . . . , gl in a group G is said to generate the group G if every element of G can
be written as a product list of the generators. We then represent this as G = 〈g1, . . . , gl〉.
For our example, S = 〈Z1Z2, Z2Z3〉 as Z1Z3 = (Z1Z2)(Z2Z3) and I = (Z1Z2)

2. To check
if a state is stabilized by a set S, we just need to check if it’s stabilized by its generators.
The advantage arises in its compactness. If the size of a group is N , the size of its gen-
erator set is at most log(N).

Some subgroups of S can only stabilize a trivial subspace. For example, any subgroup
with −I, as −I |ψ〉 = |ψ〉 is only possible for |ψ〉 = 0. What are the conditions for a
non-trivial subspace?

• the elements of S commute.

• −I is not an element of S.
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The seven qubit Steane code can be written in the stabilizer formulation. Six gener-
ators generate the stabilizer for the code space of the Steane code.

Name Operator

g1 IIIXXXX
g2 IXXIIXX
g3 XIXIXIX
g4 IIIZZZZ
g5 IZZIIZZ
g6 ZIZIZIZ

Table 3.3: Stabilizer generators for the seven qubit Steane code.

Note the similarity in structure between the generators and the parity check matrices
for C1 and C2 described in the previous section. The first three generators have Xs in
the locations corresponding to 1s in the rows of the parity check matrix H[C1]. Similarly,
the last three generators have Zs in the locations corresponding to 1s in the rows of the
parity check matrix H[C2]. This proves that, there is nothing special about Steane code’s
status as a quantum code - it is merely a subspace of a Hilbert space which happens to
have a description using stabilizers.

In practice, we want our generator set to be independent. In other words, removing
any generator gi from the group makes the generated group smaller,

〈g1, . . . , gi−1, gi+1, . . . , gl〉 6= 〈g1, . . . , gl〉. (3.50)

Checking if a set of generators in independent is done using a check matrix, so-named
because it plays a role analogous to the parity check matrix.

Suppose S = 〈g1, . . . , gl〉 for a n qubit space. The check matrix is a l × 2n matrix whose
rows correspond to the generators; the left half of the matrix contains 1s where the gener-
ator has an X, and the right side of the matrix contains 1s where the generator has a Z.
Lastly, if the generator has a Y , both left and right side entries are 1. More concretely,
ith row is constructed as follows. If gi has an I on the jth qubit, then the jth and n+jth
column entries are 0; if it contains an X on the jth qubit, then the jth column entry is 1
and n+ jth column entry is 0; if it contains an Z on the jth qubit, then the jth column
entry is 0 and n + jth column entry is 1; if it contains an Y on the jth qubit, then the
jth and n+ jth column entries are 1.

As an example, we now show the check matrix for the seven qubit Steane code.
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1

 . (3.51)

Note that the check matrix doesn’t contain information about the multiplicative fac-
tors. However, we can glean other information. Define r(g) to denote the 2n dimensional
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row vector representation for a generator g. Furthermore, define a 2n× 2n matrix Λ

Λ =

[
0 I
I 0

]
, (3.52)

where the off-diagonal I are both n× n.

Property 8. Two generators g and g′ commute iff r(g)Λr(g′)T = 0, where the arithmetic
is done modulo 2.

Proof. Let us split r(g) as [a, b] and r(g′) as [a′, b′], where a, b, a′, b′ are row vectors with n
entries. Thus, r(g)Λr(g′)T can be expressed as a.b′T + b.a′T . In other words, r(g)Λr(g′)T

represents a twisted inner product; the dot product of the first half of the r(g) and the
second half of r(g′) plus the dot product of the second half of the r(g) and the first half
of r(g′) (modulo 2).
We now show that r(g)Λr(g′)T is the number of anti-commuting elements (modulo 2).
Consider the following cases.

• g has I in the jth position. Thus, r(g) has 0 in the jth and the (n+ j)th position.
Thus, g′ can have any entry in the jth position as r(g)Λr(g′)T will have a contribu-
tion of 0 from the jth entry. This makes sense, as I commutes with any operator.
Thus, g having I in any position adds nothing to the number of anti-commuting
elements. Similarly, we can draw the same conclusion if g′ has an I in any position.

• g has X in the jth position. Thus, a has 1 in the jth and b has 0 in the jth position.

– a.b′T + b.a′T has a contribution of 0 from the jth entry iff b′ has 0 in the jth
entry and a′ has either 0 or 1 in the jth entry. Thus, a contribution of 0 occurs
iff g′ has operator I or X in the jth position. This makes sense X commutes
with either X or I.

– a.b′T + b.a′T has a contribution of 1 from the jth entry iff b′ has 1 in the jth
entry and a′ has either 0 or 1 in the jth entry. Thus, a contribution of 1
occurs iff g′ has operator Z or Y in the jth position. This makes sense X
anti-commutes with either Z or Y .

We can draw similar conclusions for g having Z or Y .

In other words, r(g)Λr(g′)T gets a contribution of 0 from the jth entry if the jth operator
of g and g′ commute and a contribution of 1 if if the jth operator of g and g′ anti-commute.
Since, the arithmetic is done modulo 2, r(g)Λr(g′)T is the number of anti-commuting
elements (modulo 2). Thus,

[g, g′] = 0 ⇐⇒ Number of anti-commuting elements is even

⇐⇒ Number of anti-commuting elements is 0(modulo 2)

⇐⇒ r(g)Λr(g′) = 0. (3.53)

Property 9. Let S be a subgroup of Gn such that −I is not an element of S. Then
g2 = I for all g ∈ S, and thus g = g†.
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Proof. Every member g of Gn can be written in the form

g = (i)ka1 ⊗ a2 ⊗ . . .⊗ an, (3.54)

where each ai can be either Xi, Yi, Zi and k can be any integer from 0 to 3. Thus,

g2 = (i)2ka21 ⊗ a22 ⊗ . . .⊗ a2n
= ±I, (3.55)

as (i)2k is either 1 or −1 and a2i = I for Xi, Yi, Zi. Given that −I /∈ S, g2 = I for
all g ∈ S. Furthermore, multiplying by g† and since g is unitary, g†g = I, we see that
g = g†.

We now show the independence of generators can be inferred from the check-matrix.

Property 10. Let S = 〈g1, . . . , gl〉 be such that −I /∈ S. The generators g1 through
gl are independent if and only if the rows of the corresponding check-matrix are linearly
independent.

Proof. We prove the contrapositive. First, notice that g2i = I for all i. Furthermore,
observe that r(g)+r(g′) = r(gg′), so addition in the row vector representation corresponds
to multiplication of group elements. Thus, the rows of the check matrix are linearly
dependent

∑
i air(gi) = 0 and aj 6= 0 for some j, if and only if

∏
i g

ai
i is equal to the

identity, upto an overall multiplicative factor. Since −i /∈ S, the multiplicative factor
must be 1. Thus, this corresponds to gj = g−1j =

∏
i 6=j g

ai
i and thus, are dependent

generators.

Property 11. Let S = 〈g1, . . . , gl〉 be generated by l independent elements from Gn such
that −I /∈ S. Fix i in the range 1, . . . , l. Then, there exists g ∈ Gn such that ggig

† = −gi
and ggjg

† = gj for all j 6= i.

Proof. Let G be the check matrix associated with the generators. The rows are linearly
independent using Property 10. Thus, there exists a 2n-dimensional vector x such that
GΛx = ei, where ei is an l-dimensional vector with 1 in the ith position and 0 elsewhere.
Let g be such that r(g) = xT . Thus, by the definition of x, we have r(gj)Λr(g)T = 0 for
j 6= i and r(gi)Λr(g) = 1. Thus, we know that, using Property 8,

• For all j 6= i, [gj, g] = 0. Thus, gjg = ggj and thus, gj = ggjg
†.

• {gi, g} = 0. Thus, gig = −ggi and thus, gi = −ggig†.

Property 12. Let S = 〈g1, . . . , gn−k〉 be generated by n − k independent elements from
Gn such that −I /∈ S. Then, VS is a 2k dimensional space.

Proof. Let x = (x1, . . . , xn−k) be a vector of n− k elements of Z2. Define,

P x
S ≡

∏n−k
j=1 (I + (−1)xjgj)

2n−k
. (3.56)

Because (I + gj)/2 is the projector onto the +1 eigenspace of gj, we see that, by the

definition of VS, P
(0,...,0)
S must be the projector onto VS. By Property 11, for each x, there
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exists a gx in Gn such that gxP
(0,...,0)
S g†x = P x

S , and thus, the dimension of P x
S is the same

as VS. Furthermore, for distinct x, P x
S are orthogonal. We also see that

I =
∑
x

P x
S . (3.57)

The left hand side is a projector onto a 2n-dimensional space, while the right hand side
is a sum over 2n−k orthogonal projectors of the same size as VS, which means VS must
be of size 2k.

With this, we conclude our look at the basic elements of the stabilizer formalism. We
have used the stabilizer formalism to describe vector spaces, so far.

3.7.2 Unitary gates

We now expand the formalism to talk about the dynamics of a system as well. Suppose
we apply a unitary operation U to a vector space VS stabilized by the group S. Let |ψ〉
be any element of VS. Then, for any element g of S,

U |ψ〉 = Ug |ψ〉 = UgU †U |ψ〉 , (3.58)

and thus, U |ψ〉 is stabilized by UgU †. In other words, the vector space UVS is stabi-
lized by the group USU † ≡ {UgU †|g ∈ S}. Furthermore, if g1, . . . , gl generate S, then
Ug1U

†, . . . , UglU
† generate USU †. Thus, to compute the change in stabilizer, we only

need to compute how it affects the generators!

As a concrete example, we look at the the action of the Hadamard gate. We see that,

HZH† = X. (3.59)

Thus, the state stabilized by Z, which we know to be |0〉, upon acting of the Hadamard
gate becomes stabilized by X, which we know to be |+〉. We now look at the CNOT
gate, which along with the Hadamard gate, can create entanglement.

Denoting U to be CNOT gate (with qubit 1 as control and 2 as target), we see that

UX1U
† =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


= X1X2. (3.60)

Similarly, we see that UX2U
† = X2, UZ1U

† = Z1 and UZ2U
† = Z1Z2. Now, we

can calculate how U conjugates other two qubit operators. For example, UX1X2U
† =

UX1U
†UX2U

† = (X1X2)X2 = X1. Similarly, UY2U
† = iUX2Z2U

† = iUX2U
†UZ2U

† =
iX2(Z1Z2) = Z1Y2.

It turns out that any unitary operation taking elements of Gn to elements of Gn under
conjugation can be composed from Hadamard, phase and CNOT gates. This set is called
the normalizer of Gn, i.e., the set of U such that UGnU

† = Gn.
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3.7.3 Measurement in the stabilizer formalism

Beyond the vector spaces and unitary dynamics, measurements can be conveniently de-
scribed as well. Imagine we take a measurement of G ∈ Gn. We further assume that g is
a product of Pauli matrices with no multiplicative factors of −1 or ±i. The system is in
the state |ψ〉, stabilized by 〈g1, . . . , gn〉. Upon measurement, there are two possibilites,

• g commutes all the generators.

• g anti-commutes with one or more generators. Suppose g anti-commutes with
g1. We can assume that g commutes with all other generators, since if it doesn’t
commute with one of them (say g2), we replace g2 with g1g2, with which it commutes
now.

In the first case, either g or −g is an element of the stabilizer by the following argument.
Since gjg |ψ〉 = ggj |ψ〉 = g |ψ〉 for each generator gj, g |ψ〉 is in VS and is therefore a
multiple of |ψ〉. Furthermore, since g2 = I, g |ψ〉 = ± |ψ〉, whence g or −g must be in
the stabilizer. We assume g is in the stabilizer, with −g processing analogously. In this
instance, g |ψ〉 = |ψ〉 and thus a measurement of g yield +1 with probability 1 and no
disturbance to the system. Thus, the stabilizer is invariant.

In the second case, g anti-commutes with g1. g has eigenvalues±1 and thus, the projectors
for the outcomes are (I ± g)/2 respectively, and the probabilities are given by p(+1) =
Tr
(
I+g
2
|ψ〉〈ψ|

)
and p(−1) = Tr

(
I−g
2
|ψ〉〈ψ|

)
). Using the fact that g1 |ψ〉 = |ψ〉 and

gg1 = −g1g,

p(+1) = Tr

(
I + g

2
|ψ〉〈ψ|

)
= Tr

(
g1
I − g

2
|ψ〉〈ψ|

)
= Tr

(
I − g

2
|ψ〉〈ψ|

)
= p(−1). (3.61)

Thus, p(+1) = p(−1) = 1/2. Suppose +1 occurs. The new state is given by |ψ+〉 =
(I + g) |ψ〉 /

√
2 which has stabilizer 〈g, g2, . . . , gn〉. Similarly, if the result −1 occurs, the

state will then be stabilized by 〈−g, g2, . . . , gn〉.

3.7.4 Stabilizer Code Constructions

We now use the stabilizer formalism to describe quantum codes. The basic idea is thus
- an [n, k] stabilizer code is defined to be the vector space VS stabilized by a subgroup
S of Gn such that −I /∈ S and S has n − k independent and commuting generators,
S = 〈g1, . . . , gn−k〉. This code is denoted by C(S).

Given this code C(S), which is 2k-dimensional, we can choose any 2k orthonormal vec-
tors in the code C(S) to act as the logical computational basis states. However, more
systematic methods exist. Here, we outline one important method.
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We first choose operators Z̄1, . . . Z̄k ∈ Gn such that g1, . . . , gn−k, Z̄1, . . . , Z̄k form an in-
dependent and commuting set (The construction is shown in the following section). The
Z̄j operator plays the role of a logical Pauli sigma Z operator on logical qubit number j.
In other words, the logical computational basis state |x1, . . . , xk〉L is defined to the state
with stabilizer

〈g1, . . . , gn−k, (−1)x1Z̄1, . . . , (−1)xkZ̄k〉. (3.62)

Similarly, we define X̄j to be that product of Pauli matrices, such that

X̄jZ̄jX̄
†
j = −Z̄j

X̄jZ̄iX̄
†
j = Z̄i for i 6= j

X̄jgkX̄
†
j = gk for all k. (3.63)

Thus, we see that X̄j has the effect of a quantum NOT gate acting on the jth encoded
qubit. The operator X̄j commutes with all the generators of the code, commutes with all
Z̄k expect Z̄j with which it anti-commutes.

We now look at the error-correcting properties of a stabilizer code. Suppose C(S) is
a stabilizer code and an error E ∈ Gn occurs. In the case that E anti-commutes with an
element of the stabilizer, the code space C(S) is taken to an orthogonal subspace, and
the error can be detected and corrected. If E ∈ S, the error E doesn’t affect the state.
Thus, the real danger occurs for errors E that commute with all elements of S but is not
in S, i.e., Eg = gE for all g ∈ S. The set of E ∈ Gn such that Eg = gE for all g ∈ S is
known as the centralizer of S in Gn and is denoted by Z(S). Another subset of interest,
called the normalizer of S, denoted by N(S), consists of all elements E of Gn such that
EgE† ∈ S for all g ∈ S. Note that Z(S) ⊆ N(S). However, for any S such that −I /∈ S,
Z(S) = N(S).

Theorem 4 (Error-correction conditions for stabilizer codes). Let S be the stabilizer for a
stabilizer code C(S). Suppose {Ej} is a set of operators in Gn such that E†jEk /∈ N(S)−S
for all j and k. Then {Ej} is a correctable set of errors for the code C(S).

Proof. Without loss of generality, we restrict ourselves to errors where E†j = Ej. We
can split Gn into 3 subsets : S, N(S) − S and Gn − N(S). Since we know that
E†jEk /∈ N(S)− S, there are two possibilities: either E†jEk in S or E†jEk in Gn −N(S).
Let P be the projector onto the code space C(S).

In the first case, PE†jEkP = P since P is invariant under multiplication by elements
of S.

In the second case, E†jEk must anticommute with some element g1 of S. Let g1, . . . , gn−k
be the set of generators of S, so that

P =

∏n−k
l=1 (I + gl)

2n−k
(3.64)

Using anti-commutativity gives

E†jEkP = (I − g1)E†jEk
∏n−k

l=2 (I + gl)

2n−k
. (3.65)
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But P (I − g1) = 0 since (I + g1)(I − g1) = 0 and therefore PE†jEkP = 0 whenever

E†jEkP ∈ Gn−N(S). Thus, using Theorem 2, we see that the set of errors {Ej} satisfies
the quantum error-correction conditions, and thus forms a correctable set of errors.

However, the theorem doesn’t specify how to perform the error-correction explicitly.
To see the procedure, we take a set of generators g1, . . . , gn−k of an [n, k] stabilizer code
and {Ej} is a set of correctable errors for the code. Error-detection is performed by
measuring the generators of the stabilizer g1 through gn−k in turn, to obtain the error
syndrome, which consists of the results of the measurement β1 through βn−k. If the error
Ej occurred, then the error syndrome is such that EjglE

†
j = βlgl. In the case when Ej

is the unique error operator having this syndrome, recovery may be simply achieved by
applying E†j . In the case when there are two distinct errors Ej and Ej′ giving the same

error syndrome, it follows that EjPE
†
j = Ej′PE

†
j′ . Thus, E†jEj′PE

†
j′Ej = P , implying

that E†jEj′ ∈ S and thus, applying E†j after the error Ej′ occurred results in successful
recovery. Thus, for each possible error syndrome, pick a single error Ej with that syn-

drome, and apply E†j .

We now look at the previous examples, like the bit-flip code and Shor’s code, but
using the stabilizer formalism.

3.7.5 Three qubit bit-flip code

The three qubit bit-flip code is spanned by |000〉 and |111〉, with a stabilizer generated
by Z1Z2 and Z2Z3. By inspection, we see that every possible product of two elements
from the error set {I,X1, X2, X3} – I,X1, X2, X3, X1X2, X2X3, X1X3 – anti-commutes
with atleast one of the generators of the stabilizer (expect I which is in S). Thus, from
Theorem 4, the set {I,X1, X2, X3} forms a correctable set of errors for the three qubit
bit-flip code.

Error-detection is effected by measuring the stabilizer generators Z1Z2 and Z2Z3. For
example, if error X1 occurred, then the stabilizer is transformed to 〈−Z1Z2, Z2Z3〉, so the
syndrome measurement gives the result −1 and +1. This error, and the other possible
errors, can thus, be corrected.

3.7.6 Nine qubit Shor code

The stabilier for the Shor code has eight generators as shown below.

Name Operator

g1 ZZIIIIIII
g2 IZZIIIIII
g3 IIIZZIIII
g4 IIIIZZIII
g5 IIIIIIZZI
g6 IIIIIIIZZ
g7 XXXXXXIII
g8 IIIXXXXXX

Table 3.4: Generators for the nine qubit Shor code
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The conditions of Theorem 4 can be verified for the error set consisting for I and all
single qubit errors. For example, consider single qubit errors like X1 and Y4. The product
X1Y4 anti-commutes with Z1Z2, and thus, is not in N(S). Similarly, all other products
of two errors are either in S or else anti-commute with atleast one element of S, implying
that the Shor code can be used to correct an arbitrary single qubit error.

From direct computation, we see that Z̄ = XXXXXXXXX and X̄ = ZZZZZZZZZ.

3.7.7 Standard form for a stabilizer code

In this section, we show how the construct the logical Z and logical X operations. The
construction is much easier to understand if we put the code into a standard form.
Consider the check matrix ofr an [n, k] stabilizer code C,

G =
[
G1 G2

]
. (3.66)

This matrix has n − k rows. Swapping rows of this matrix corresponds to relabeling
generators and swapping columns on both sides of the matrix corresponds to relabeling
qubits. Furthermore, adding two rows corresponds to multiplying generators; it is easy
to see that we may always replace a generator gi by gigj when i 6= j. Thus, there is an
equivalent code with a different set of generators whose check matrix corresponds to the
matrix G where Gaussian elimination has been done on G1, swapping qubits if needed:

where r is the rank of G1. Next, we perform Gaussian elimination on E to obtain

The last s generators cannot commute with the first r generators unless D2 = 0, and
thus, we can assume s = 0. Furthermore, we can also set C1 = 0 by taking appropriate
linear combinations of rows, so our final check matrix has the form:
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where we have relabeled E2 as E and D1 as D. While not unique, any code will have
a check matrix of the form above.

Given the standard code of a quantum code, we can define the logical Z operations with
ease. Recall that the logical Z operations are k operators independent of the generators
and of each other, yet commuting with one another and the generators. We now create
a check matrix for these encoded Z operations Gz in the form Gz = [F1F2F3|F4F5F6],
where all the matrices have k rows, and column sizes r, n − k − r, k, r, n − k − r and k
respectively. We chose these matrices such that Gz = [000|AT2 0I]. We now show the that
these encoded Z operations satisfy all the required properties.

• Commutativity with the generators. We know that commutativity between two
generators g, g′ is given by r(g)Λr(g′) = 0. Thus, commutativity between the
generators and the encoded Z operations is given by GΛGT

z = 0. Expanding, we
see that this condition is met as I × A2 + A2 = 0.

• Commutativity within encoded Z set. We see that the logical Z operations commute
with themselves as they’re made up entirely of Z and I operations.

• Independence from the generators. The encoded Z operations are independent of
the first r generators as no X terms appear in the encoded Z operations. The
independence from the remaining n − k − r generators follows from the fact that
(n− k − r)× (n− k − r) identity matrix appearing in the generator check matrix
and the lack of the corresponding terms for the encoded Z operations.

• Independence within encoded Z set. The identity matrix in the definition of Gz

ensure that the rows are linearly independent of each other, thus, showing that the
encoded Z operations are independent of each other.

Similarly, we pick the encoded X operators, with k × 2n check matrix [0ET I|CT00].
The encoded X operations can be shown to be independent of one another and of the
generators, commute with the generators, with each other, and X̄j commutes with all the
Z̄k except Z̄j, with which it anti-commutes.

For example, we calculate the encoded X and Z operations for the Steane code, with
check matrix (3.51). We have n = 7 and k = 1, we see that the r = 3 by inspection. The
matrix can be brought into standard form by swapping qubits 1 and 4, 3 and 4, and 6
and 7. Then by adding row 6 to row 4, then row 6 to row 5, and finally adding rows 4
and 5 to row 6. The resulting standard for is:

1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 1 1 0 0 1 0

 . (3.67)

Thus, we can readA2 = (1, 1, 0) and thus, the encoded Z has check matrix [0000000|1100001]
which corresponds to Z̄ = Z1Z2Z7. Since qubits 1 and 4, 3 and 4, 6 and 7 were swapped,
this corresponds to an encoded Z̄ = Z2Z4Z6 in the original code. Previously, we men-
tioned that Z̄ = Z1Z2Z3Z4Z5Z6Z7. This is because Z1Z3Z5Z7 which is an element of the
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stabilizer of the Steane code, and thus have the same effect on Steane code states.

Furthermore, we see that C = (0, 0, 0) and E = (1, 1, 0). Thus, the encoded X has
check matrix [0001101|0000000] which corresponds to X4X5X7, which after swapping,
corresponds to X1X5X6.

3.7.8 Quantum circuits for encoding, decoding and correction

One important feature of the stabilizer formalism is that their structure enables sys-
tematic construction of procedures for encoding, decoding and error-correction. We look
at at [n, k] stabilizer code with generators g1, . . . , gn−k and logical Z operators Z̄1, . . . , Z̄k.

Preparing an encoded |0〉⊗kL , is quite simple. We begin with the state |0〉⊗n and measure
each of the observables g1, . . . , gn−k, Z̄1, . . . , Z̄k. Depending on the measurement out-
comes, the resulting quantum state will have the stabilizer 〈±g1, . . . ,±gn−k,±Z̄1, . . . ,±Z̄k〉,
with the signs being determined by the measurement outcomes. The signs can now we
fixed up by applying products of Pauli operators resulting in the state with a stabilizer
〈g1, . . . , gn−k, Z̄1, . . . , Z̄k〉.

Once |0〉⊗kL has been prepared, we can prepare an arbitrary computational state
|x1, . . . , xk〉L by applying the appropriate X̄1, . . . , X̄k.

Decoding is simple as well, but it can be shown that a full decoding is often not nec-
essary. The techniques of fault-tolerant quantum computation can be used to perform
logical operations directly on encoded data.

The error-correction procedure has already been described: measure the generators,
obtain the error syndrome and perform the required recovery operation. Performing
measurement can be done in a systematic way, as shown in [NC11].
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Conclusion

In this work, we looked at several features and characteristics of open quantum systems
and quantum error-correction. We explored the system-bath approach and derived the
Kraus OSR representation for a channel. We look at the action of several characteristic
channels on a single qubit.

We took a deep look at several aspects of quantum error-correction. We began with the
problems with quantum error-correction systems, and the three-qubit bit- and phase-flip
codes. Combining these codes, we look at the Shor code, capable of correcting arbitrary
errors on a single qubit, by discretizing the errors. We saw the construction of quantum
codes using classical linear codes, most notably being the Steane code. We finally look
at the stabilizer formalism. We saw how vector spaces, dynamics and measurements
are described in the stabilizer formalism. Lastly, we constructed several codes using the
stabilizer formalism and looked at circuits for encoding, decoding and correction.

38



Bibliography

[Kay18] Alastair Kay. Tutorial on the quantikz package, 2018.

[Lid19] Daniel A. Lidar. Lecture notes on the theory of open quantum systems, 2019.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th
edition, 2011.

39


	Introduction
	Open Quantum Systems
	The System and the Environment
	Partial Trace

	Open System Dynamics
	Kraus Operator Sum Representation
	Normalization
	The Schrödinger equation as a special case
	Quantum Maps

	Quantum Maps on a qubit
	Transformation of the Bloch Vector
	Phase Damping Channel


	Quantum Error Correction
	Classical Error Correction
	Three qubit bit-flip code
	Three qubit phase-flip code
	The Shor Code
	Theory of Quantum Error Correction
	Discretization of errors

	Constructing quantum codes
	Classical Linear Codes
	Calderbank-Shor-Steane Codes
	Steane Code

	Stabilizer Codes
	Stabilizer Formalism
	Unitary gates
	Measurement in the stabilizer formalism
	Stabilizer Code Constructions
	Three qubit bit-flip code
	Nine qubit Shor code
	Standard form for a stabilizer code
	Quantum circuits for encoding, decoding and correction


	Conclusion

